

Mastering
Minimal APIs in ASP.NET Core

Build, test, and prototype web APIs quickly using .NET and C#

Andrea Tosato

Marco Minerva

Emanuele Bartolesi

BIRMINGHAM—MUMBAI

Mastering Minimal APIs in ASP.NET Core
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Aaron Tanna
Senior Editor: Mark D’Souza
Senior Content Development Editor: Rakhi Patel
Technical Editor: Simran Ali
Copy Editor: Safis Editing
Project Coordinator: Sonam Pandey
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Prashant Ghare
Marketing Coordinators: Anamika Singh and Marylou De Mello

First published: October 2022
Production reference: 1230922

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80323-782-4

www.packt.com

http://www.packt.com

In memory of my mother and father, Giovanna and Francesco, for their sacrifices and for supporting
me in studying and facing new challenges every day.

– Andrea Tosato

To my family, friends, and colleagues, who have always believed in me during this journey.

– Marco Minerva

In memory of my beloved mom, and to my wife, Francesca, for her sacrifices and understanding.

Last but not least, to my son, Leonardo. The greatest success in my life.

– Emanuele Bartolesi

Contributors

About the authors
Andrea Tosato is a full stack software engineer and architect of .NET applications. Andrea has successfully
developed .NET applications in various industries, sometimes facing complex technological challenges.
He deals with desktop, web, and mobile development but with the arrival of the cloud, Azure has
become his passion. In 2017, he co-founded Cloudgen Verona (a .NET community based in Verona,
Italy) with his friend, Marco Zamana. In 2019, he was named Microsoft MVP for the first time in the
Azure category. Andrea graduated from the University of Pavia with a degree in computer engineering
in 2008 and successfully completed his master’s degree, also in computer engineering, in Modena in
2011. Andrea was born in 1986 in Verona, Italy, where he currently works as a remote worker. You
can find Andrea on Twitter.

Marco Minerva has been a computer enthusiast since elementary school when he received an old
Commodore VIC-20 as a gift. He began developing with GW-BASIC. After some experience with Visual
Basic, he has been using .NET since its first introduction. He got his master’s degree in information
technology in 2006. Today, he lives in Taggia, Italy, where he works as a freelance consultant and is
involved in designing and developing solutions for the Microsoft ecosystem, building applications for
desktop, mobile, and web. His expertise is in backend development as a software architect. He runs
training courses, is a speaker at technical events, writes articles for magazines, and regularly makes
live streams about coding on Twitch. He has been a Microsoft MVP since 2013. You can find Marco
on Twitter.

Emanuele Bartolesi is a Microsoft 365 architect who is passionate about frontend technologies and
everything related to the cloud, especially Microsoft Azure. He currently lives in Zurich and actively
participates in local and international community activities and events. Emanuele shares his love of
technology through his blog. He has also become a Twitch affiliate as a live coder, and you can find
him as kasuken on Twitch to write some code with him. Emanuele has been a Microsoft MVP in
the developer technologies category since 2014, and a GitHub Star since 2022. You can find Emanuele
on Twitter.

About the reviewers
Marco Parenzan is a senior solution architect for Smart Factory, IoT, and Azure-based solutions at
beanTech, a tech company in Italy. He has been a Microsoft Azure MVP since 2014 and has been
playing with the cloud since 2010. He speaks about Azure and .NET development at major community
events in Italy. He is a community lead for 1nn0va, a recognized Microsoft-oriented community in
Pordenone, Italy, where he organizes local community events. He wrote a book on Azure for Packt
Publishing in 2016. He loves playing with his Commodore 64 and trying to write small retro games
in .NET or JavaScript.

Marco Zamana lives in Verona in the magnificent hills of Valpolicella. He has a background as a
software developer and architect. He was Microsoft’s Most Valuable Professional for 3 years in the
artificial intelligence category. He currently works as a cloud solution architect in engineering at
Microsoft. He is the co-founder of Cloudgen Verona, a Veronese association that discusses topics
related to the cloud and, above all, Azure.

Ashirwad Satapathi works as an associate consultant at Microsoft and has expertise in building
scalable applications with ASP.NET Core and Microsoft Azure. He is a published author and an active
blogger in the C# Corner developer community. He was awarded the title of C# Corner Most Valuable
Professional (MVP) in September 2020 and September 2021 for his contributions to the developer
community. He is also a member of the Outreach Committee of the .NET Foundation.

Preface xi

Part 1: Introduction�

1
Introduction to Minimal APIs� 3

Technical requirements� 3
A brief history of the Microsoft
Web API� 5
Creating a new minimal API project� 6
Creating the project with Visual Studio 2022� 6

Creating the project with Visual Studio Code� 8

Looking at the structure of the project� 9
Summary� 13

2
Exploring Minimal APIs and Their Advantages� 15

Technical requirements� 15
Routing 16
Route handlers� 17
Route parameters� 18
Route constraints� 19

Parameter binding� 20
Special bindings� 22
Custom binding� 23

Exploring responses� 26
Controlling serialization� 29
Architecting a minimal API project� 31
Going forward� 33

Summary 35

Table of Contents

Table of Contentsviii

3
Working with Minimal APIs� 37

Technical requirements� 37
Exploring Swagger� 38
Swagger in the Visual Studio scaffold� 38
OpenAPI Generator� 40
Swagger in minimal APIs� 41

Enabling CORS� 50
CORS flow from an HTTP request� 52
Setting CORS with a policy� 55
Setting CORS with extensions� 58

Setting CORS with an annotation� 58

Working with global API settings� 58
Configuration in .NET 6� 59
Options pattern� 63
Configuration sources� 68

Error handling� 73
Traditional approach� 73
Problem Details and the IETF standard� 75

Summary� 80

Part 2: What’s New in .NET 6?�

4
Dependency Injection in a Minimal API Project� 83

Technical requirements� 83
What is dependency injection?� 84
Understanding dependency injection lifetimes� 87

Implementing dependency injection
in a minimal API project� 88
Summary� 91

5
Using Logging to Identify Errors� 93

Technical requirements� 93
Exploring logging in .NET� 93
Configuring logging� 96
Customizing log message� 98
Infrastructure logging� 99
Source generators� 100

Leveraging the logging framework� 103
Console log� 103
Creating a custom provider� 106
Application Insights � 111

Storing a structured log with Serilog� 113
Summary� 117

Table of Contents ix

6
Exploring Validation and Mapping� 119

Technical requirements� 119
Handling validation� 119
Performing validation with data annotations� 121
Integrating FluentValidation� 123
Adding validation information to Swagger� 127

Mapping data to and from APIs� 129
Performing manual mapping� 131
Mapping with AutoMapper� 132

Summary� 134

7
Integration with the Data Access Layer� 135

Technical requirements� 135
Using Entity Framework� 136
Setting up the project� 136
Adding EF Core to the project� 137
Adding endpoints to the project� 138

Using Dapper� 143
Setting up the project� 143

Creating a repository pattern� 144
Using Dapper to query the database� 146
Adding a new entity in the database with
Dapper� 148
Implementing the repository in the endpoints� 149

Summary� 149

Part 3: Advanced Development and
Microservices Concepts�

8
Adding Authentication and Authorization� 153

Technical requirements� 153
Introducing authentication and
authorization� 154
Protecting a minimal API� 154
Generating a JWT bearer� 157
Validating a JWT bearer� 161
Adding JWT support to Swagger� 162

Testing authentication� 164

Handling authorization – roles and
policies� 165
Handling role-based authorization� 165
Applying policy-based authorization� 168
Using default and fallback policies� 172

Summary� 174

Table of Contentsx

9
Leveraging Globalization and Localization� 175

Technical requirements� 175
Introducing globalization and
localization 176
Localizing a minimal API application�176
Adding globalization support to Swagger� 179

Using resource files� 182
Creating and working with resource files� 182
Formatting localized messages using
resource files� 185

Integrating localization in validation
frameworks 186
Localizing validation messages with
MiniValidation 186
Localizing validation messages with
FluentValidation 189

Adding UTC support to a globalized
minimal API� 191
Summary 194

10
Evaluating and Benchmarking the Performance of Minimal APIs� 195

Technical requirements� 196
Improvements with minimal APIs 197
Exploring performance with
load tests� 198
Use cases� 198
Writing k6 tests� 202

Running a k6 performance test� 203

Benchmarking minimal APIs with
BenchmarkDotNet 210
Running BenchmarkDotNet� 211

Summary 214

Index 215

Other Books You May Enjoy� 222

Preface

The simplification of code is every developer’s dream. Minimal APIs are a new feature in .NET 6 that
aims to simplify code. They are used for building APIs with minimal dependencies in ASP.NET Core.
Minimal APIs simplify API development through the use of more compact code syntax.

Developers using minimal APIs will be able to take advantage of this syntax on some occasions to
work more quickly with less code and fewer files to maintain. Here, you will be introduced to the main
new features of .NET 6 and understand the basic themes of minimal APIs, which weren’t available
in .NET 5 and previous versions. You’ll see how to enable Swagger for API documentation, along
with CORS, and how to handle application errors. You will learn to structure your code better with
Microsoft’s new .NET framework called Dependency Injection. Finally, you will see the performance
and benchmarking improvements in .NET 6 that are introduced with minimal APIs.

By the end of this book, you will be able to leverage minimal APIs and understand in what way they
are related to the classic development of web APIs.

Who this book is for
This book is for .NET developers who want to build .NET and .NET Core APIs and want to study
the new features of .NET 6. Basic knowledge of C#, .NET, Visual Studio, and REST APIs is assumed.

What this book covers
Chapter 1, Introduction to Minimal APIs, introduces you to the motivations behind introducing
minimal APIs within .NET 6. We will explain the main new features of .NET 6 and the work that the
.NET team is doing with this latest version. You will come to understand the reasons why we decided
to write the book.

Chapter 2, Exploring Minimal APIs and Their Advantages, introduces you to the basic ways in which
minimal APIs differ from .NET 5 and all previous versions. We will explore in detail routing and
serialization with System.Text.JSON. Finally, we will end with some concepts related to writing our
first REST API.

Chapter 3, Working with Minimal APIs, introduces you to the advanced ways in which minimal APIs
differ from .NET 5 and all previous versions. We will explore in detail how to enable Swagger for API
documentation. We will see how to enable CORS and how to handle application errors.

Chapter 4, Dependency Injection in a Minimal API Project, introduces you to Dependency Injection
and goes over how to use it with a minimal API.

xii Preface

Chapter 5, Using Logging to Identify Errors, teaches you about the logging tools that .NET provides. A
logger is one of the tools that developers have to use to debug an application or understand its failure
in production. The logging library has been built into ASP.NET with several features enabled by design.

Chapter 6, Exploring Validation and Mapping, will teach you how to validate incoming data to an API
and how to return any errors or messages. Once the data is validated, it can be mapped to a model
that will then be used to process the request.

Chapter 7, Integration with the Data Access Layer, helps you understand the best practices for accessing
and using data in minimal APIs.

Chapter 8, Adding Authentication and Authorization, looks at how to write an authentication and
authorization system by leveraging our own database or a cloud service such as Azure Active Directory.

Chapter 9, Leveraging Globalization and Localization, shows you how to leverage the translation system
in a minimal API project and provide errors in the same language of the client.

Chapter 10, Evaluating and Benchmarking the Performance of Minimal APIs, shows the improvements
in .NET 6 and those that will be introduced with the minimal APIs.

To get the most out of this book
You will need Visual Studio 2022 with ASP.NET and a web development workload or Visual Studio
Code and K6 installed on your computer.

All code examples have been tested using Visual Studio 2022 and Visual Studio Code on the Windows OS.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Basic development skills for Microsoft web technology are required to fully understand this book.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6. If there’s an update to the code,
it will be updated in the GitHub repository.

https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6

xiiiPreface

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used in this book.

You can download it here: https://packt.link/GmUNL

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “In minimal
APIs, we define the route patterns using the Map* methods of the WebApplication object.”

A block of code is set as follows:

app.MapGet("/hello-get", () => "[GET] Hello World!");

app.MapPost("/hello-post", () => "[POST] Hello World!");

app.MapPut("/hello-put", () => "[PUT] Hello World!");

app.MapDelete("/hello-delete", () => "[DELETE] Hello World!");

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

if (app.Environment.IsDevelopment())

{

    app.UseSwagger();

    app.UseSwaggerUI();

}

Any command-line input or output is written as follows:

dotnet new webapi -minimal -o Chapter01

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “Open Visual Studio 2022 and from
the main screen, click on Create a new project.”

Tips or important notes
Appear like this.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://packt.link/GmUNL

Prefacexiv

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Mastering Minimal APIs in ASP.NET Core, we’d love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1803237821

Part 1:
Introduction

In the first part of the book, we want to introduce you to the context of the book. We will explain the
basics of minimal APIs and how they work. We want to add, brick by brick, the knowledge needed
to take advantage of all the power that minimal APIs can grant us.

We will cover the following chapters in this part:

•	 Chapter 1, Introduction to Minimal APIs

•	 Chapter 2, Exploring Minimal APIs and Their Advantages

•	 Chapter 3, Working with Minimal APIs

1
Introduction to Minimal APIs

In this chapter of the book, we will introduce some basic themes related to minimal APIs in .NET 6.0,
showing how to set up a development environment for .NET 6 and more specifically for developing
minimal APIs with ASP.NET Core.

We will first begin with a brief history of minimal APIs. Then, we will create a new minimal API
project with Visual Studio 2022 and Visual Code Studio. At the end, we will take a look at the structure
of our project.

By the end of this chapter, you will be able to create a new minimal API project and start to work with
this new template for a REST API.

In this chapter, we will be covering the following topics:

•	 A brief history of the Microsoft Web API

•	 Creating a new minimal API project

•	 Looking at the structure of the project

Technical requirements
To work with the ASP.NET Core 6 minimal APIs you need to install, first of all, .NET 6 on your
development environment.

If you have not already installed it, let’s do that now:

1.	 Navigate to the following link: https://dotnet.microsoft.com.

2.	 Click on the Download button.

3.	 By default, the browser chooses the right operating system for you, but if not, select your
operating system at the top of the page.

4.	 Download the LTS version of the .NET 6.0 SDK.

https://dotnet.microsoft.com

Introduction to Minimal APIs4

5.	 Start the installer.

6.	 Reboot the machine (this is not mandatory).

You can see which SDKs are installed on your development machine using the following command
in a terminal:

dotnet –list-sdks

Before you start coding, you will need a code editor or an Integrated Development Environment
(IDE). You can choose your favorite from the following list:

•	 Visual Studio Code for Windows, Mac, or Linux

•	 Visual Studio 2022

•	 Visual Studio 2022 for Mac

In the last few years, Visual Studio Code has become very popular not only in the developer community
but also in the Microsoft community. Even if you use Visual Studio 2022 for your day-to-day work,
we recommend downloading and installing Visual Studio Code and giving it a try.

Let’s download and install Visual Studio Code and some extensions:

1.	 Navigate to https://code.visualstudio.com.

2.	 Download the Stable or the Insiders edition.

3.	 Start the installer.

4.	 Launch Visual Studio Code.

5.	 Click on the Extensions icon.

You will see the C# extension at the top of the list.

6.	 Click on the Install button and wait.

You can install other recommended extensions for developing with C# and ASP.NET Core. If you
want to install them, you see our recommendations in the following table:

Additionally, if you want to proceed with the IDE that’s most widely used by .NET developers, you
can download and install Visual Studio 2022.

https://code.visualstudio.com

A brief history of the Microsoft Web API 5

If you don’t have a license, check if you can use the Community Edition. There are a few restrictions
on getting a license, but you can use it if you are a student, have open source projects, or want to use
it as an individual. Here’s how to download and install Visual Studio 2022:

1.	 Navigate to https://visualstudio.microsoft.com/downloads/.

2.	 Select Visual Studio 2022 version 17.0 or later and download it.

3.	 Start the installer.

4.	 On the Workloads tab, select the following:

	� ASP.NET and web development

	� Azure Development

5.	 On the Individual Components tab, select the following:

	� Git for Windows

All the code samples in this chapter can be found in the GitHub repository for this book at https://
github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/
Chapter01.

Now, you have an environment in which you can follow and try the code used in this book.

A brief history of the Microsoft Web API
A few years ago in 2007, .NET web applications went through an evolution with the introduction of
ASP.NET MVC. Since then, .NET has provided native support for the Model-View-Controller pattern
that was common in other languages.

Five years later, in 2012, RESTful APIs were the new trend on the internet and .NET responded to this
with a new approach for developing APIs, called ASP.NET Web API. It was a significant improvement
over Windows Communication Foundation (WCF) because it was easier to develop services for the
web. Later, in ASP.NET Core these frameworks were unified under the name ASP.NET Core MVC:
one single framework with which to develop web applications and APIs.

In ASP.NET Core MVC applications, the controller is responsible for accepting inputs, orchestrating
operations, and at the end, returning a response. A developer can extend the entire pipeline with
filters, binding, validation, and much more. It’s a fully featured framework for building modern web
applications.

But in the real world, there are also scenarios and use cases where you don’t need all the features of the
MVC framework or you have to factor in a constraint on performance. ASP.NET Core implements a
lot of middleware that you can remove from or add to your applications at will, but there are a lot of
common features that you would need to implement by yourself in this scenario.

https://visualstudio.microsoft.com/downloads/
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter01
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter01
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter01

Introduction to Minimal APIs6

At last, ASP.NET Core 6.0 has filled these gaps with minimal APIs.

Now that we have covered a brief history of minimal APIs, we will start creating a new minimal API
project in the next section.

Creating a new minimal API project
Let’s start with our first project and try to analyze the new template for the minimal API approach
when writing a RESTful API.

In this section, we will create our first minimal API project. We will start by using Visual Studio 2022
and then we will show how you can also create the project with Visual Studio Code and the .NET CLI.

Creating the project with Visual Studio 2022

Follow these steps to create a new project in Visual Studio 2022:

1.	 Open Visual Studio 2022 and on the main screen, click on Create a new project:

Figure 1.1 – Visual Studio 2022 splash screen

Creating a new minimal API project 7

2.	 On the next screen, write API in the textbox at the top of the window and select the template
called ASP.NET Core Web API:

Figure 1.2 – Create a new project screen

3.	 Next, on the Configure your new project screen, insert a name for the new project and select
the root folder for your new solution:

Figure 1.3 – Configure your new project screen

Introduction to Minimal APIs8

For this example we will use the name Chapter01, but you can choose any name that appeals
to you.

4.	 On the following Additional information screen, make sure to select .NET 6.0 (Long-term-
support) from the Framework dropdown. And most important of all, uncheck the Use
controllers (uncheck to use minimal APIs) option.

Figure 1.4 – Additional information screen

5.	 Click Create and, after a few seconds, you will see the code of your new minimal API project.

Now we are going to show how to create the same project using Visual Studio Code and the .NET CLI.

Creating the project with Visual Studio Code

Creating a project with Visual Studio Code is easier and faster than with Visual Studio 2022 because
you don’t have to use a UI or wizard, rather just a terminal and the .NET CLI.

Looking at the structure of the project 9

You don’t need to install anything new for this because the .NET CLI is included with the .NET 6
installation (as in the previous versions of the .NET SDKs). Follow these steps to create a project
using Visual Studio Code:

1.	 Open your console, shell, or Bash terminal, and switch to your working directory.

2.	 Use the following command to create a new Web API application:

dotnet new webapi -minimal -o Chapter01

As you can see, we have inserted the -minimal parameter in the preceding command to use
the minimal API project template instead of the ASP.NET Core template with the controllers.

3.	 Now open the new project with Visual Studio Code using the following commands:

cd Chapter01

code.

Now that we know how to create a new minimal API project, we are going to have a quick look at the
structure of this new template.

Looking at the structure of the project
Whether you are using Visual Studio or Visual Studio Code, you should see the following code in
the Program.cs file:

var builder = WebApplication.CreateBuilder(args);

// Add services to the container.

// Learn more about configuring Swagger/OpenAPI at https://aka.
ms/aspnetcore/swashbuckle

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

var app = builder.Build();

// Configure the HTTP request pipeline.

if (app.Environment.IsDevelopment())

{

 app.UseSwagger();

 app.UseSwaggerUI();

}

Introduction to Minimal APIs10

app.UseHttpsRedirection();

var summaries = new[]

{

 "Freezing", "Bracing", "Chilly", "Cool", "Mild", "Warm",

    "Balmy", "Hot", "Sweltering", "Scorching"

};

app.MapGet("/weatherforecast", () =>

{

 var forecast = Enumerable.Range(1, 5).Select(index =>

 new WeatherForecast

 (

 DateTime.Now.AddDays(index),

 Random.Shared.Next(-20, 55),

 summaries[Random.Shared.Next(summaries.Length)]

))

 .ToArray();

 return forecast;

})

.WithName("GetWeatherForecast");

app.Run();

internal record WeatherForecast(DateTime Date, int
TemperatureC, string? Summary)

{

    public int TemperatureF => 32 + (int)(TemperatureC /

    0.5556);

}

First of all, with the minimal API approach, all of your code will be inside the Program.cs file.
If you are a seasoned .NET developer, it’s easy to understand the preceding code, and you’ll find it
similar to some of the things you’ve always used with the controller approach.

Looking at the structure of the project 11

At the end of the day, it’s another way to write an API, but it’s based on ASP.NET Core.

However, if you are new to ASP.NET, this single file approach is easy to understand. It’s easy to
understand how to extend the code in the template and add more features to this API.

Don’t forget that minimal means that it contains the minimum set of components needed to build
an HTTP API but it doesn’t mean that the application you are going to build will be simple. It will
require a good design like any other .NET application.

As a final point, the minimal API approach is not a replacement for the MVC approach. It’s just
another way to write the same thing.

Let’s go back to the code.

Even the template of the minimal API uses the new approach of .NET 6 web applications: a top-level
statement.

It means that the project has a Program.cs file only instead of using two files to configure an
application.

If you don’t like this style of coding, you can convert your application to the old template for ASP.NET
Core 3.x/5. This approach still continues to work in .NET as well.

Important note
We can find more information about the .NET 6 top-level statements template
at https://docs.microsoft.com/dotnet/core/tutorials/top-level-
templates.

By default, the new template includes support for the OpenAPI Specification and more specifically,
Swagger.

Let’s say that we have our documentation and playground for the endpoints working out of the box
without any additional configuration needed.

You can see the default configuration for Swagger in the following two lines of codes:

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

Very often, you don’t want to expose Swagger and all the endpoints to the production or staging
environments. The default template enables Swagger out of the box only in the development environment
with the following lines of code:

if (app.Environment.IsDevelopment())

{

https://docs.microsoft.com/dotnet/core/tutorials/top-level-templates
https://docs.microsoft.com/dotnet/core/tutorials/top-level-templates

Introduction to Minimal APIs12

 app.UseSwagger();

 app.UseSwaggerUI();

}

If the application is running on the dev elopment environment, you must also include the Swagger
documentation, but otherwise not.

Note
We’ll talk in detail about Swagger in Chapter 3, Working with Minimal APIs.

In these last few lines of code in the template, we are introducing another generic concept for .NET
6 web applications: environments.

Typically, when we develop a professional application, there are a lot of phases through which an
application is developed, tested, and finally published to the end users.

By convention, these phases are regulated and called development, staging, and production. As
developers, we might like to change the behavior of the application based on the current environment.

There are several ways to access this information but the typical way to retrieve the actual environment
in modern .NET 6 applications is to use environment variables. You can access the environment
variables directly from the app variable in the Program.cs file.

The following code block shows how to retrieve all the information about the environments directly
from the startup point of the application:

if (app.Environment.IsDevelopment())

{

 // your code here

}

if (app.Environment.IsStaging())

{

 // your code here

}

if (app.Environment.IsProduction())

{

 // your code here

}

Summary 13

In many cases, you can define additional environments, and you can check your custom environment
with the following code:

if (app.Environment.IsEnvironment("TestEnvironment"))

{

 // your code here

}

To define routes and handlers in minimal APIs, we use the MapGet, MapPost, MapPut, and
MapDelete methods. If you are used to using HTTP verbs, you will have noticed that the verb
Patch is not present, but you can define any set of verbs using MapMethods.

For instance, if you want to create a new endpoint to post some data to the API, you can write the
following code:

app.MapPost("/weatherforecast", async (WeatherForecast

 model, IWeatherService repo) =>

{

 // ...

});

As you can see in the short preceding code, it’s very easy to add a new endpoint with the new minimal
API template.

It was more difficult previously, especially for a new developer, to code a new endpoint with binding
parameters and use dependency injection.

Important note
We’ll talk in detail about routing in Chapter 2, Exploring Minimal APIs and Their Advantages,
and about dependency injection in Chapter 4, Dependency Injection in a Minimal API Project.

Summary
In this chapter, we first started with a brief history of minimal APIs. Next, we saw how to create
a project with Visual Studio 2022 as well as Visual Studio Code and the .NET CLI. After that, we
examined the structure of the new template, how to access different environments, and how to start
interacting with REST endpoints.

In the next chapter, we will see how to bind parameters, the new routing configuration, and how to
customize a response.

2
Exploring Minimal APIs and

Their Advantages

In this chapter of the book, we will introduce some of the basic themes related to minimal APIs in
.NET 6.0, showing how they differ from the controller-based web APIs that we have written in the
previous version of .NET. We will also try to underline both the pros and the cons of this new approach
of writing APIs.

In this chapter, we will be covering the following topics:

•	 Routing

•	 Parameter binding

•	 Exploring responses

•	 Controlling serialization

•	 Architecting a minimal API project

Technical requirements
To follow the descriptions in this chapter, you will need to create an ASP.NET Core 6.0 Web API
application. You can either use one of the following options:

•	 Option 1: Click on the New | Project command in the File menu of Visual Studio 2022 – then,
choose the ASP.NET Core Web API template. Select a name and the working directory in the
wizard and be sure to uncheck the Use controllers (uncheck to use minimal APIs) option
in the next step.

•	 Option 2: Open your console, shell, or Bash terminal, and change to your working directory.
Use the following command to create a new Web API application:

dotnet new webapi -minimal -o Chapter02

Exploring Minimal APIs and Their Advantages16

Now, open the project in Visual Studio by double-clicking the project file, or in Visual Studio
Code, by typing the following command in the already open console:

cd Chapter02

code.

Finally, you can safely remove all the code related to the WeatherForecast sample, as we don’t
need it for this chapter.

All the code samples in this chapter can be found in the GitHub repository for this book at https://
github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/
Chapter02.

Routing
According to the official Microsoft documentation available at https://docs.microsoft.
com/aspnet/core/fundamentals/routing, the following definition is given for routing:

Routing is responsible for matching incoming HTTP requests and dispatching
those requests to the app’s executable endpoints. Endpoints are the app’s units of

executable request-handling code. Endpoints are defined in the app and configured
when the app starts. The endpoint matching process can extract values from the
request’s URL and provide those values for request processing. Using endpoint
information from the app, routing is also able to generate URLs that map to

endpoints.

In controller-based web APIs, routing is defined via the UseEndpoints() method in
Startup.cs or using data annotations such as Route, HttpGet, HttpPost, HttpPut,
HttpPatch, and HttpDelete right over the action methods.

As mentioned in Chapter 1, Introduction to Minimal APIs in minimal APIs, we define the route patterns
using the Map* methods of the WebApplication object. Here’s an example:

app.MapGet("/hello-get", () => "[GET] Hello World!");

app.MapPost("/hello-post", () => "[POST] Hello World!");

app.MapPut("/hello-put", () => "[PUT] Hello World!");

app.MapDelete("/hello-delete", () => "[DELETE] Hello

 World!");

In this code, we have defined four endpoints, each with a different routing and method. Of course,
we can use the same route pattern with different HTTP verbs.

https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter02
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter02
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter02
https://docs.microsoft.com/aspnet/core/fundamentals/routing
https://docs.microsoft.com/aspnet/core/fundamentals/routing

Routing 17

Note
As soon as we add an endpoint to our application (for example, using MapGet()),
UseRouting() is automatically added at the start of the middleware pipeline and
UseEndpoints() at the end of the pipeline.

As shown here, ASP.NET Core 6.0 provides Map* methods for the most common HTTP verbs. If we
need to use other verbs, we can use the generic MapMethods:

app.MapMethods("/hello-patch", new[] { HttpMethods.Patch },

 () => "[PATCH] Hello World!");

app.MapMethods("/hello-head", new[] { HttpMethods.Head },

 () => "[HEAD] Hello World!");

app.MapMethods("/hello-options", new[] {

 HttpMethods.Options }, () => "[OPTIONS] Hello World!");

In the following sections, we will show in detail how routing works effectively and how we can control
its behavior.

Route handlers

Methods that execute when a route URL matches (according to parameters and constraints, as described
in the following sections) are called route handlers. Route handlers can be a lambda expression, a
local function, an instance method, or a static method, whether synchronous or asynchronous:

•	 Here’s an example of a lambda expression (inline or using a variable):

app.MapGet("/hello-inline", () => "[INLINE LAMBDA]

 Hello World!");

var handler = () => "[LAMBDA VARIABLE] Hello World!";

app.MapGet("/hello", handler);

•	 Here’s an example of a local function:

string Hello() => "[LOCAL FUNCTION] Hello World!";

app.MapGet("/hello", Hello);

•	 The following is an example of an instance method:

var handler = new HelloHandler();

app.MapGet("/hello", handler.Hello);

Exploring Minimal APIs and Their Advantages18

class HelloHandler

{

 public string Hello()

 => "[INSTANCE METHOD] Hello

 World!";

}

•	 Here, we can see an example of a static method:

app.MapGet("/hello", HelloHandler.Hello);

class HelloHandler

{

 public static string Hello()

 => "[STATIC METHOD] Hello World!";

}

Route parameters

As with the previous versions of .NET, we can create route patterns with parameters that will be
automatically captured by the handler:

app.MapGet("/users/{username}/products/{productId}",

 (string username, int productId)

 => $"The Username is {username} and the product Id

 is {productId}");

A route can contain an arbitrary number of parameters. When a request is made to this route, the
parameters will be captured, parsed, and passed as arguments to the corresponding handler. In this
way, the handler will always receive typed arguments (in the preceding sample, we are sure that the
username is string and the product ID is int).

If the route values cannot be casted to the specified types, then an exception of the
BadHttpRequestException type will be thrown, and the API will respond with a 400 Bad
Request message.

Routing 19

Route constraints

Route constraints are used to restrict valid types for route parameters. Typical constraints allow us
to specify that a parameter must be a number, a string, or a GUID. To specify a route constraint, we
simply need to add a colon after the parameter name, then specify the constraint name:

app.MapGet("/users/{id:int}", (int id) => $"The user Id is

 {id}");

app.MapGet("/users/{id:guid}", (Guid id) => $"The user Guid

 is {id}");

Minimal APIs support all the route constraints that were already available in the previous versions of
ASP.NET Core. You can find the full list of route constraints at the following link: https://docs.
microsoft.com/aspnet/core/fundamentals/routing#route-constraint-
reference.

If, according to the constraints, no route matches the specified path, we don’t get an exception. Instead
we obtain a 404 Not Found message, because, in fact, if the constraints do not fit, the route itself
isn’t reachable. So, for example, in the following cases we get 404 responses:

Table 2.1 – Examples of an invalid path according to the route constraints

Every other argument in the handler that is not declared as a route constraint is expected, by default,
in the query string. For example, see the following:

// Matches hello?name=Marco

app.MapGet("/hello", (string name) => $"Hello, {name}!");

In the next section, Parameter binding, we’ll go deeper into how to use binding to further customize
routing by specifying, for example, where to search for routing arguments, how to change their names,
and how to have optional route parameters.

https://docs.microsoft.com/aspnet/core/fundamentals/routing#route-constraint-reference
https://docs.microsoft.com/aspnet/core/fundamentals/routing#route-constraint-reference
https://docs.microsoft.com/aspnet/core/fundamentals/routing#route-constraint-reference

Exploring Minimal APIs and Their Advantages20

Parameter binding
Parameter binding is the process that converts request data (i.e., URL paths, query strings, or the
body) into strongly typed parameters that can be consumed by route handlers. ASP.NET Core minimal
APIs support the following binding sources:

•	 Route values

•	 Query strings

•	 Headers

•	 The body (as JSON, the only format supported by default)

•	 A service provider (dependency injection)

We’ll talk in detail about dependency injection in Chapter 4, Implementing Dependency Injection.

As we’ll see later in this chapter, if necessary, we can customize the way in which binding is performed
for a particular input. Unfortunately, in the current version, binding from Form is not natively supported
in minimal APIs. This means that, for example, IFormFile is not supported either.

To better understand how parameter binding works, let’s take a look at the following API:

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<PeopleService>();

var app = builder.Build();

app.MapPut("/people/{id:int}", (int id, bool notify, Person

 person, PeopleService peopleService) => { });

app.Run();

public class PeopleService { }

public record class Person(string FirstName, string

 LastName);

Parameter binding 21

Parameters that are passed to the handler are resolved in the following ways:

Table 2.2 – Parameter binding sources

As we can see, ASP.NET Core is able to automatically understand where to search for parameters
for binding, based on the route pattern and the types of the parameters themselves. For example, a
complex type such as the Person class is expected in the request body.

If needed, as in the previous versions of ASP.NET Core, we can use attributes to explicitly specify where
parameters are bound from and, optionally, use different names for them. See the following endpoint:

app.MapGet("/search", string q) => { });

The API can be invoked with /search?q=text. However, using q as the name of the argument
isn’t a good idea, because its meaning is not self-explanatory. So, we can modify the handler using
FromQueryAttribute:

app.MapGet("/search", ([FromQuery(Name = "q")] string

 searchText) => { });

In this way, the API still expects a query string parameter named q, but in the handler its value is now
bound to the searchText argument.

Note
According to the standard, the GET, DELETE, HEAD, and OPTIONS HTTP options should never
have a body. If, nevertheless, you want to use it, you need to explicitly add the [FromBody]
attribute to the handler argument; otherwise, you’ll get an InvalidOperationException
error. However, keep in mind that this is a bad practice.

By default, all the parameters in route handlers are required. So, if, according to routing, ASP.NET
Core finds a valid route, but not all the required parameters are provided, we will get an error. For
example, let’s look at the following method:

app.MapGet("/people", (int pageIndex, int itemsPerPage) => {
});

Exploring Minimal APIs and Their Advantages22

If we call the endpoint without the pageIndex or itemsPerPage query string values, we will
obtain a BadHttpRequestException error, and the response will be 400 Bad Request.

To make the parameters optional, we just need to declare them as nullable or provide a default value.
The latter case is the most common. However, if we adopt this solution, we cannot use a lambda
expression for the handler. We need another approach, for example, a local function:

// This won't compile

//app.MapGet("/people", (int pageIndex = 0, int

 itemsPerPage = 50) => { });

string SearchMethod(int pageIndex = 0,

 int itemsPerPage = 50) => $"Sample

 result for page {pageIndex} getting

 {itemsPerPage} elements";

app.MapGet("/people", SearchMethod);

In this case, we are dealing with a query string, but the same rules apply to all the binding sources.

Keep in mind that if we use nullable reference types (which are enabled by default in .NET 6.0
projects) and we have, for example, a string parameter that could be null, we need to declare it as
nullable – otherwise, we’ll get a BadHttpRequestException error again. The following example
correctly defines the orderBy query string parameter as optional:

app.MapGet("/people", (string? orderBy) => $"Results ordered by
{orderBy}");

Special bindings

In controller-based web APIs, a controller that inherits from Microsoft.AspNetCore.Mvc.
ControllerBase has access to some properties that allows it to get the context of the request
and response: HttpContext, Request, Response, and User. In minimal APIs, we don’t have
a base class, but we can still access this information because it is treated as a special binding that is
always available to any handler:

app.MapGet("/products", (HttpContext context, HttpRequest req,
HttpResponse res, ClaimsPrincipal user) => { });

Tip
We can also access all these objects using the IHttpContextAccessor interface, as we
did in the previous ASP.NET Core versions.

Parameter binding 23

Custom binding

In some cases, the default way in which parameter binding works isn’t enough for our purpose. In
minimal APIs, we don’t have support for the IModelBinderProvider and IModelBinder
interfaces, but we have two alternatives to implement custom model binding.

Important note
The IModelBinderProvider and IModelBinder interfaces in controller-based
projects allow us to define the mapping between the request data and the application model.
The default model binder provided by ASP.NET Core supports most of the common data types,
but, if necessary, we can extend the system by creating our own providers. We can find more
information at the following link: https://docs.microsoft.com/aspnet/core/
mvc/advanced/custom-model-binding.

If we want to bind a parameter that comes from a route, query string, or header to a custom type, we
can add a static TryParse method to the type:

// GET /navigate?location=43.8427,7.8527

app.MapGet("/navigate", (Location location) => $"Location:

 {location.Latitude}, {location.Longitude}");

public class Location

{

 public double Latitude { get; set; }

 public double Longitude { get; set; }

 public static bool TryParse(string? value,

 IFormatProvider? provider, out Location? location)

 {

 if (!string.IsNullOrWhiteSpace(value))

 {

 var values = value.Split(',',

 StringSplitOptions.RemoveEmptyEntries);

 if (values.Length == 2 && double.

                   TryParse(values[0],

                   NumberStyles.AllowDecimalPoint,

https://docs.microsoft.com/aspnet/core/mvc/advanced/custom-model-binding
https://docs.microsoft.com/aspnet/core/mvc/advanced/custom-model-binding

Exploring Minimal APIs and Their Advantages24

                   CultureInfo.InvariantCulture,

                   out var latitude) && double.

                   TryParse(values[1], NumberStyles.

                   AllowDecimalPoint, CultureInfo.

                   InvariantCulture, out var longitude))

 {

 location = new Location

                       { Latitude = latitude,

                       Longitude = longitude };

 return true;

 }

 }

 location = null;

 return false;

 }

}

In the TryParse method, we can try to split the input parameter and check whether it contains
two decimal values: in this case, we parse the numbers to build the Location object and we return
true. Otherwise, we return false because the Location object cannot be initialized.

Important note
When the minimal API finds that a type contains a static TryParse method, even if it is a
complex type, it assumes that it is passed in the route or the query string, based on the routing
template. We can use the [FromHeader] attributes to change the binding source. In any
case, TryParse will never be invoked for the body of the request.

If we need to completely control how binding is performed, we can implement a static BindAsync
method on the type. This isn’t a very common solution, but in some cases, it can be useful:

// POST /navigate?lat=43.8427&lon=7.8527

app.MapPost("/navigate", (Location location) =>

 $"Location: {location.Latitude}, {location.Longitude}");

public class Location

{

 // ...

Parameter binding 25

 public static ValueTask<Location?> BindAsync(HttpContext

    context, ParameterInfo parameter)

 {

 if (double.TryParse(context.Request.Query["lat"],

            NumberStyles.AllowDecimalPoint, CultureInfo.

            InvariantCulture, out var latitude)&& double.

            TryParse(context.Request.Query["lon"],

            NumberStyles.AllowDecimalPoint, CultureInfo.

            InvariantCulture, out var longitude))

 {

 var location = new Location

                { Latitude = latitude, Longitude = longitude };

 return ValueTask.

                  FromResult<Location?>(location);

 }

 return ValueTask.FromResult<Location?>(null);

 }

}

As we can see, the BindAsync method takes the whole HttpContext as an argument, so we can
read all the information we need to create the actual Location object that is passed to the route
handler. In this example, we read two query string parameters (lat and lon), but (in the case of
POST, PUT, or PATCH methods) we can also read the entire body of the request and manually parse
its content. This can be useful, for instance, if we need to handle requests that have a format other
than JSON (which, as said before, is the only one supported by default).

If the BindAsync method returns null, while the corresponding route handler parameter cannot
assume this value (as in the previous example), we will get an HttpBadRequestException error,
which. as usual, will be wrapped in a 400 Bad Request response.

Important note
We shouldn’t define both the TryParse and BindAsync methods using a type; if both
are present, BindAsync always has precedence (that is, TryParse will never be invoked).

Now that we have looked at parameter binding and understood how to use it and customize its
behavior, let’s see how to work with responses in minimal APIs.

Exploring Minimal APIs and Their Advantages26

Exploring responses
As with controller-based projects, with route handlers of minimal APIs as well, we can directly return
a string or a class (either synchronously or asynchronously):

•	 If we return a string (as in the examples of the previous section), the framework writes the
string directly to the response, setting its content type to text/plain and the status code
to 200 OK

•	 If we use a class, the object is serialized into the JSON format and sent to the response with the
application/json content type and a 200 OK status code

However, in a real application, we typically need to control the response type and the status code. In
this case, we can use the static Results class, which allows us to return an instance of the IResult
interface, which in minimal APIs acts how IActionResult does for controllers. For instance, we
can use it to return a 201 Created response rather than a 400 Bad Request or a 404 Not
Found message. L et’s look at some examples:

app.MapGet("/ok", () => Results.Ok(new Person("Donald",

 "Duck")));

app.MapGet("/notfound", () => Results.NotFound());

app.MapPost("/badrequest", () =>

{

 // Creates a 400 response with a JSON body.

 return Results.BadRequest(new { ErrorMessage = "Unable to

                                    complete the request" });

});

app.MapGet("/download", (string fileName) =>

 Results.File(fileName));

record class Person(string FirstName, string LastName);

Each method of the Results class is responsible for setting the response type and status code that
correspond to the meaning of the method itself (e.g., the Results.NotFound() method returns
a 404 Not Found response). Note that even if we typically need to return an object in the case of
a 200 OK response (with Results.Ok()), it isn’t the only method that allows this. Many other
methods allow us to include a custom response; in all these cases, the response type will be set to
application/json and the object will automatically be JSON-serialized.

Exploring responses 27

The current version of minimal APIs does not support content negotiation. We only have a few
methods that allow us to explicitly set the content type, when getting a file with Results.Bytes(),
Results.Stream(), and Results.File(), or when using Results.Text() and Results.
Content(). In all other cases, when we’re dealing with complex objects, the response will be in JSON
format. This is a precise design choice since most developers rarely need to support other media types.
By supporting only JSON without performing content negotiation, minimal APIs can be very efficient.

However, this approach isn’t enough in all scenarios. In some cases, we may need to create a custom
response type, for example, if we want to return an HTML or XML response instead of the standard
JSON. We can manually use the Results.Content() method (which allows us to specify the
content as a simple string with a particular content type), but, if we have this requirement, it is better
to implement a custom IResult type, so that the solution can be reused.

For example, let’s suppose that we want to serialize objects in XML instead of JSON. We can then
define an XmlResult class that implements the IResult interface:

public class XmlResult : IResult

{

 private readonly object value;

 public XmlResult(object value)

 {

 this.value = value;

 }

 public Task ExecuteAsync(HttpContext httpContext)

 {

 using var writer = new StringWriter();

 var serializer = new XmlSerializer(value.GetType());

 serializer.Serialize(writer, value);

 var xml = writer.ToString();

 httpContext.Response.ContentType = MediaTypeNames.

 Application.Xml;

 httpContext.Response.ContentLength = Encoding.UTF8

 .GetByteCount(xml);

 return httpContext.Response.WriteAsync(xml);

Exploring Minimal APIs and Their Advantages28

 }

}

The IResult interface requires us to implement the ExecuteAsync method, which receives the
current HttpContext as an argument. We serialize the value using the XmlSerializer class
and then write it to the response, specifying the correct response type.

Now, we can directly use the new XmlResult type in our route handlers. However, best practices
suggest that we create an extension method for the IResultExtensions interface, as with the
following one:

public static class ResultExtensions

{

 public static IResult Xml(this IResultExtensions

    resultExtensions, object value) => new XmlResult(value);

}

In this way, we have a new Xml method available on the Results.Extensions property:

app.MapGet("/xml", () => Results.Extensions.Xml(new City { Name
= "Taggia" }));

public record class City

{

 public string? Name { get; init; }

}

The benefit of this approach is that we can reuse it everywhere we need to deal with XML without
having to manually handle the serialization and the response type (as we should have done using the
Result.Content() method instead).

Tip
If we want to perform content validation, we need to manually check the Accept header of
the HttpRequest object, which we can pass to our handlers, and then create the correct
response accordingly.

After analyzing how to properly handle responses in minimal APIs, we’ll see how to control the way
our data is serialized and deserialized in the next section.

Controlling serialization 29

Controlling serialization
As described in the previous sections, minimal APIs only provide built-in support for the JSON
format. In particular, the framework uses System.Text.Json for serialization and deserialization.
In controller-based APIs, we can change this default and use JSON.NET instead. This is not possible
when working with minimal APIs: we can’t replace the serializer at all.

The built-in serializer uses the following options:

•	 Case-insensitive property names during serialization

•	 Camel case property naming policy

•	 Support for quoted numbers (JSON strings for number properties)

Note
We can find more information about the System.Text.Json namespace and all the APIs
it provides at the following link: https://docs.microsoft.com/dotnet/api/
system.text.json.

In controller-based APIs, we can customize these settings by calling AddJsonOptions() fluently
after AddControllers(). In minimal APIs, we can’t use this approach since we don’t have
controllers at all, so we need to explicitly call the Configure method for JsonOptions. So, let’s
consider this handler:

app.MapGet("/product", () =>

{

 var product = new Product("Apple", null, 0.42, 6);

 return Results.Ok(product);

});

public record class Product(string Name, string? Description,
double UnitPrice, int Quantity)

{

 public double TotalPrice => UnitPrice * Quantity;

}

Using the default JSON options, we get this result:

{

 "name": "Apple",

 "description": null,

 "unitPrice": 0.42,

https://docs.microsoft.com/dotnet/api/system.text.json
https://docs.microsoft.com/dotnet/api/system.text.json

Exploring Minimal APIs and Their Advantages30

 "quantity": 6,

 "totalPrice": 2.52

}

Now, let’s configure JsonOptions:

var builder = WebApplication.CreateBuilder(args);

builder.Services.Configure<Microsoft.AspNetCore.Http.Json.

JsonOptions>(options =>

{

 options.SerializerOptions.DefaultIgnoreCondition =

 JsonIgnoreCondition.WhenWritingNull;

 options.SerializerOptions.IgnoreReadOnlyProperties

 = true;

});

Calling the /product endpoint again, we’ll now get the following:

{

 "name": "Apple",

 "unitPrice": 0.42,

 "quantity": 6

}

As expected, the Description property hasn’t been serialized because it is null, as well as
TotalPrice, which isn’t included in the response because it is read-only.

Another typical use case for JsonOptions is when we want to add converters that will be automatically
applied for each serialization or deserialization, for example, JsonStrinEnumConverter to
convert enumeration values into or from strings.

Important note
Be aware that the JsonOptions class used by minimal APIs is the one available in the
Microsoft.AspNetCore.Http.Json namespace. Do not confuse it with the one that
is defined in the Microsoft.AspNetCore.Mvc namespace; the name of the object is the
same, but the latter is valid only for controllers, so it has no effect if set in a minimal API project.

Architecting a minimal API project 31

Because of the JSON-only support, if we do not explicitly add support for other formats, as described
in the previous sections (using, for example, the BindAsync method on a custom type), minimal
APIs will automatically perform some validations on the body binding source and handle the following
scenarios:

Table 2.3 – The response status codes for body binding problems

In these cases, because body validation fails, our route handlers will never be invoked, and we will get
the response status codes shown in the preceding table directly.

Now, we have covered all the pillars that we need to start developing minimal APIs. However, there
is another important thing to talk about: the correct way to design a real project to avoid common
mistakes within the architecture.

Architecting a minimal API project
Up to now, we have written route handlers directly in the Program.cs file. This is a perfectly
supported scenario: with minimal APIs, we can write all our code inside this single file. In fact, almost
all the samples show this solution. However, while this is allowed, we can easily imagine how this
approach can lead to unstructured and therefore unmaintainable projects. If we have fewer endpoints,
it is fine – otherwise, it is better to organize our handlers in separate files.

Let’s suppose that we have the following code right in the Program.cs file because we have to
handle CRUD operations:

app.MapGet("/api/people", (PeopleService peopleService) =>

 { });

app.MapGet("/api/people/{id:guid}", (Guid id, PeopleService

 peopleService) => { });

app.MapPost("/api/people", (Person Person, PeopleService

 people) => { });

app.MapPut("/api/people/{id:guid}", (Guid id, Person

 Person, PeopleService people) => { });

Exploring Minimal APIs and Their Advantages32

app.MapDelete("/api/people/{id:guid}", (Guid id,

 PeopleService people) => { });

It’s easy to imagine that, if we have all the implementation here (even if we’re using PeopleService
to extract the business logic), this file can easily explode. So, in real scenarios, the inline lambda
approach isn’t the best practice. We should use the other methods that we have covered in the Routing
section to define the handlers instead. So, it is a good idea to create an external class to hold all the
route handlers:

public class PeopleHandler

{

 public static void MapEndpoints(IEndpointRouteBuilder

 app)

   {

 app.MapGet("/api/people", GetList);

 app.MapGet("/api/people/{id:guid}", Get);

 app.MapPost("/api/people", Insert);

 app.MapPut("/api/people/{id:guid}", Update);

 app.MapDelete("/api/people/{id:guid}", Delete);

 }

 private static IResult GetList(PeopleService

 peopleService) { /* ... */ }

 private static IResult Get(Guid id, PeopleService

 peopleService) { /* ... */ }

 private static IResult Insert(Person person,

 PeopleService people) { /* ... */ }

 private static IResult Update(Guid id, Person

 person, PeopleService people) { /* ... */ }

 private static IResult Delete(Guid id) { /* ... */ }

}

Architecting a minimal API project 33

We have grouped all the endpoint definitions inside the PeopleHandler.MapEndpoints static
method, which takes the IEndpointRouteBuilder interface as an argument, which in turn is
implemented by the WebApplication class. Then, instead of using lambda expressions, we have
created separate methods for each handler, so that the code is much cleaner. In this way, to register
all these handlers in our minimal API, we just need the following code in Program.cs:

var builder = WebApplication.CreateBuilder(args);

// ..

var app = builder.Build();

// ..

PeopleHandler.MapEndpoints(app);

app.Run();

Going forward

The approach just shown allows us to better organize a minimal API project, but still requires that
we explicitly add a line to Program.cs for every handler we want to define. Using an interface and
a bit of reflection, we can create a straightforward and reusable solution to simplify our work with
minimal APIs.

So, let’s start by defining the following interface:

public interface IEndpointRouteHandler

{

 public void MapEndpoints(IEndpointRouteBuilder app);

}

As the name implies, we need to make all our handlers (as with PeopleHandler previously)
implement it:

public class PeopleHandler : IEndpointRouteHandler

{

 public void MapEndpoints(IEndpointRouteBuilder app)

 {

 // ...

 }

 // ...

}

Exploring Minimal APIs and Their Advantages34

Note
The MapEndpoints method isn’t static anymore, because now it is the implementation of
the IEndpointRouteHandler interface.

Now we need a new extension method that, using reflection, scans an assembly for all the classes that
implement this interface and automatically calls their MapEndpoints methods:

public static class IEndpointRouteBuilderExtensions

{

 public static void MapEndpoints(this

 IEndpointRouteBuilder app, Assembly assembly)

 {

 var endpointRouteHandlerInterfaceType =

 typeof(IEndpointRouteHandler);

 var endpointRouteHandlerTypes =

 assembly.GetTypes().Where(t =>

 t.IsClass && !t.IsAbstract && !t.IsGenericType

 && t.GetConstructor(Type.EmptyTypes) != null

 && endpointRouteHandlerInterfaceType

 .IsAssignableFrom(t));

 foreach (var endpointRouteHandlerType in

 endpointRouteHandlerTypes)

 {

 var instantiatedType = (IEndpointRouteHandler)

 Activator.CreateInstance

 (endpointRouteHandlerType)!;

 instantiatedType.MapEndpoints(app);

 }

 }

}

Summary 35

Tip
If you want to go into further detail about reflection and how it works in .NET, you can start
by browsing the following page: https://docs.microsoft.com/dotnet/csharp/
programming-guide/concepts/reflection.

With all these pieces in place, the last thing to do is to call the extension method in the Program.
cs file, before the Run() method:

app.MapEndpoints(Assembly.GetExecutingAssembly());

app.Run();

In this way, when we add new handlers, we should only need to create a new class that implements
the IEndpointRouteHandler interface. No other changes will be required in Program.cs to
add the new endpoints to the routing engine.

Writing route handlers in external files and thinking about a way to automate endpoint registrations
so that Program.cs won’t grow for each feature addition is the right way to architect a minimal
API project.

Summary
ASP.NET Core minimal APIs represent a new way of writing HTTP APIs in the .NET world. In this
chapter, we covered all the pillars that we need to start developing minimal APIs, how to effectively
approach them, and the best practices to take into consideration when deciding to follow this architecture.

In the next chapter, we’ll focus on some advanced concepts such as documenting APIs with Swagger,
defining a correct error handling system, and integrating a minimal API with a single-page application.

https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/dotnet/csharp/programming-guide/concepts/reflection

3
Working with Minimal APIs

In this chapter, we will try to apply some advanced development techniques available in earlier versions
of .NET. We will touch on four common topics that are disjointed from each other.

We’ll cover productivity topics and best practices for frontend interfacing and configuration management.

Every developer, sooner or later, will encounter the issues that we describe in this chapter. A programmer
will have to write documentation for APIs, will have to make the API talk to a JavaScript frontend,
will have to handle errors and try to fix them, and will have to configure the application according
to parameters.

The themes we will touch on in this chapter are as follows:

•	 Exploring Swagger

•	 Supporting CORS

•	 Working with global API settings

•	 Error handling

Technical requirements
As reported in the previous chapters, it will be necessary to have the .NET 6 development framework
available; you will also need to use .NET tools to run an in-memory web server.

To validate the functionality of cross-origin resource sharing (CORS), we should exploit a frontend
application residing on a different HTTP address from the one where we will host the API.

To test the CORS example that we will propose within the chapter, we will take advantage of a web
server in memory, which will allow us to host a simple static HTML page.

Working with Minimal APIs38

To host the web page (HTML and JavaScript), we will therefore use LiveReloadServer, which you
can install as a .NET tool with the following command:

dotnet tool install -g LiveReloadServer

All the code samples in this chapter can be found in the GitHub repository for this book at https://
github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/
Chapter03.

Exploring Swagger
Swagger has entered the life of .NET developers in a big way; it’s been present on the project shelves
for several versions of Visual Studio.

Swagger is a tool based on the OpenAPI specification and allows you to document APIs with a web
application. According to the official documentation available at https://oai.github.io/
Documentation/introduction.html:

“The OpenAPI Specification allows the description of a remote API accessible
through HTTP or HTTP-like protocols.

An API defines the allowed interactions between two pieces of software, just like a
user interface defines the ways in which a user can interact with a program.

An API is composed of the list of possible methods to call (requests to make), their
parameters, return values and any data format they require (among other things).
This is equivalent to how a user’s interactions with a mobile phone app are limited

to the buttons, sliders and text boxes in the app’s user interface.”

Swagger in the Visual Studio scaffold

We understand then that Swagger, as we know it in the .NET world, is nothing but a set of specifications
defined for all applications that expose web-based APIs:

https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter03
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter03
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter03
https://oai.github.io/Documentation/introduction.html
https://oai.github.io/Documentation/introduction.html

Exploring Swagger 39

Figure 3.1 – Visual Studio scaffold

By selecting Enable OpenAPI support, Visual Studio goes to add a NuGet package called Swashbuckle.
AspNetCore and automatically configures it in the Program.cs file.

We show the few lines that are added with a new project. With these few pieces of information, a web
application is enabled only for the development environment, which allows the developer to test the
API without generating a client or using tools external to the application:

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen();

var app = builder.Build();

if (app.Environment.IsDevelopment())

{

 app.UseSwagger();

 app.UseSwaggerUI();

}

Working with Minimal APIs40

The graphical part generated by Swagger greatly increases productivity and allows the developer to
share information with those who will interface with the application, be it a frontend application or
a machine application.

Note
We remind you that enabling Swagger in a production environment is strongly discouraged
because sensitive information could be publicly exposed on the web or on the network where
the application resides.

We have seen how to introduce Swagger into our API applications; this functionality allows us to
document our API, as well as allow users to generate a client to call our application. Let’s see the
options we have to quickly interface an application with APIs described with OpenAPI.

OpenAPI Generator

With Swagger, and especially with the OpenAPI standard, you can automatically generate clients to
connect to the web application. Clients can be generated for many languages but also for development
tools. We know how tedious and repetitive it is to write clients to access the Web API. Open API
Generator helps us automate code generation, inspect the API documentation made by Swagger and
OpenAPI, and automatically generate code to interface with the API. Simple, easy, and above all, fast.

The @openapitools/openapi-generator-cli npm package is a very well-known package
wrapper for OpenAPI Generator, which you can find at https://openapi-generator.tech/.

With this tool, you can generate clients for programming languages as well as load testing tools such
as JMeter and K6.

It is not necessary to install the tool on your machine, but if the URL of the application is accessible
from the machine, you can use a Docker image, as described by the following command:

docker run --rm \

 -v ${PWD}:/local openapitools/openapi-generator-cli
generate \

 -i /local/petstore.yaml \

 -g go \

 -o /local/out/go

The command allows you to generate a Go client using the OpenAPI definition found in the petstore.
yaml file that is mounted on the Docker volume.

Now, let’s go into detail to understand how you can leverage Swagger in .NET 6 projects and with
minimal APIs.

https://openapi-generator.tech/

Exploring Swagger 41

Swagger in minimal APIs

In ASP.NET Web API, as in the following code excerpt, we see a method documented with C# language
annotations with the triple slash (///).

The documentation section is leveraged to add more information to the API description. In addition,
the ProducesResponseType annotations help Swagger identify the possible codes that the client
must handle as a result of the method call:

/// <summary>

/// Creates a Contact.

/// </summary>

/// <param name="contact"></param>

/// <returns>A newly created Contact</returns>

/// <response code="201">Returns the newly created contact</
response>

/// <response code="400">If the contact is null</response>

[HttpPost]

[ProducesResponseType(StatusCodes.Status201Created)]

[ProducesResponseType(StatusCodes.Status400BadRequest)]

public async Task<IActionResult> Create(Contact contactItem)

{

 _context.Contacts.Add(contactItem);

 await _context.SaveChangesAsync();

 return CreatedAtAction(nameof(Get), new { id =

     contactItem.Id }, contactItem);

}

Swagger, in addition to the annotations on single methods, is also instructed by the documentation
of the language to give further information to those who will then have to use the API application. A
description of the methods of the parameters is always welcome by those who will have to interface;
unfortunately, it is not possible to exploit this functionality in the minimal API.

Let’s go in order and see how to start using Swagger on a single method:

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen(c =>

{

Working with Minimal APIs42

 c.SwaggerDoc("v1", new()

 {

 Title = builder.Environment.ApplicationName,

 Version = "v1", Contact = new()

        { Name = "PacktAuthor", Email = "authors@packtpub.com",

          Url = new Uri("https://www.packtpub.com/") },

 Description = "PacktPub Minimal API - Swagger",

 License = new Microsoft.OpenApi.Models.

            OpenApiLicense(),

 TermsOfService = new("https://www.packtpub.com/")

});

});

var app = builder.Build();

if (app.Environment.IsDevelopment())

{

 app.UseSwagger();

 app.UseSwaggerUI();

}

With this first example, we have configured Swagger and general Swagger information. We have
included additional information that enriches Swagger’s UI. The only mandatory information is the
title, while the version, contact, description, license, and terms of service are optional.

The UseSwaggerUI() method automatically configures where to put the UI and the JSON file
describing the API with the OpenAPI format.

Exploring Swagger 43

Here is the result at the graphical level:

Figure 3.2 – The Swagger UI

We can immediately see that the OpenAPI contract information has been placed in the /swagger/
v1/swagger.json path.

The contact information is populated, but no operations are reported as we haven’t entered any yet.
Should the API have versioning? In the top-right section, we can select the available operations for
each version.

We can customize the Swagger URL and insert the documentation on a new path; the important thing
is to redefine SwaggerEndpoint, as follows:

app.UseSwaggerUI(c => c.SwaggerEndpoint("/swagger/v1/swagger.
json", $"{builder.Environment.ApplicationName} v1"));

Let’s now go on to add the endpoints that describe the business logic.

It is very important to define RouteHandlerBuilder because it allows us to describe all the
properties of the endpoint that we have written in code.

The UI of Swagger must be enriched as much as possible; we must describe at best what the minimal
APIs allow us to specify. Unfortunately, not all the functionalities are available, as in ASP.NET Web API.

Versioning in minimal APIs

Versioning in minimal APIs is not handled in the framework functionality; as a result, even Swagger
cannot handle UI-side API versioning. So, we observe that when we go to the Select a definition
section shown in Figure 3.2, only one entry for the current version of the API is visible.

Working with Minimal APIs44

Swagger features

We just realized that not all features are available in Swagger; let’s now explore what is available instead.
To describe the possible output values of an endpoint, we can call functions that can be called after
the handler, such as the Produces or WithTags functions, which we are now going to explore.

The Produces function decorates the endpoint with all the possible responses that the client should
be able to manage. We can add the name of the operation ID; this information will not appear in the
Swagger screen, but it will be the name with which the client will create the method to call the endpoint.
OperationId is the unique name of the operation made available by the handler.

To exclude an endpoint from the API description, you need to call ExcludeFromDescription().
This function is rarely used, but it is very useful in cases where you don’t want to expose endpoints to
programmers who are developing the frontend because that particular endpoint is used by a machine
application.

Finally, we can add and tag the various endpoints and segment them for better client management:

app.MapGet("/sampleresponse", () =>

 {

 return Results.Ok(new ResponseData("My Response"));

 })

 .Produces<ResponseData>(StatusCodes.Status200OK)

 .WithTags("Sample")

 .WithName("SampleResponseOperation"); // operation ids to

   Open API

app.MapGet("/sampleresponseskipped", () =>

{

 return Results.Ok(new ResponseData("My Response Skipped"));

})

 .ExcludeFromDescription();

app.MapGet("/{id}", (int id) => Results.Ok(id));

app.MapPost("/", (ResponseData data) => Results.Ok(data))

 .Accepts<ResponseData>(MediaTypeNames.Application.Json);

Exploring Swagger 45

This is the graphical result of Swagger; as I anticipated earlier, the tags and operation IDs are not
shown by the web client:

Figure 3.3 – Swagger UI methods

Working with Minimal APIs46

The endpoint description, on the other hand, is very useful to include. It’s very easy to implement:
just insert C# comments in the method (just insert three slashes, ///, in the method). Minimal APIs
don’t have methods like we are used to in web-based controllers, so they are not natively supported.

Swagger isn’t just the GUI we’re used to seeing. Above all, Swagger is the JSON file that supports the
OpenAPI specification, of which the latest version is 3.1.0.

In the following snippet, we show the section containing the description of the first endpoint that we
inserted in the API. We can infer both the tag and the operation ID; this information will be used by
those who will interface with the API:

"paths": {

 "/sampleresponse": {

 "get": {

 "tags": [

 "Sample"

],

 "operationId": "SampleResponseOperation",

 "responses": {

 "200": {

 "description": "Success",

 "content": {

 "application/json": {

 "schema": {

 "$ref": "#/
components/schemas/ResponseData"

 }

 }

 }

 }

 }

 }

 },

In this section, we have seen how to configure Swagger and what is currently not yet supported.

In the following chapters, we will also see how to configure OpenAPI, both for the OpenID Connect
standard and authentication via the API key.

Exploring Swagger 47

In the preceding code snippet of the Swagger UI, Swagger makes the schematics of the objects involved
available, both inbound to the various endpoints and outbound from them.

Figure 3.4 – Input and output data schema

We will learn how to deal with these objects and how to validate and define them in Chapter 6,
Exploring Validation and Mapping.

Swagger OperationFilter

The operation filter allows you to add behavior to all operations shown by Swagger. In the following
example, we’ll show you how to add an HTTP header to a particular call, filtering it by OperationId.

When you go to define an operation filter, you can also set filters based on routes, tags, and operation IDs:

public class CorrelationIdOperationFilter : IOperationFilter

{

 private readonly IWebHostEnvironment environment;

 public CorrelationIdOperationFilter(IWebHostEnvironment

    environment)

 {

     this.environment = environment;

Working with Minimal APIs48

 }

 /// <summary>

 /// Apply header in parameter Swagger.

 /// We add default value in parameter for developer

        environment

 /// </summary>

 /// <param name="operation"></param>

 /// <param name="context"></param>

 public void Apply(OpenApiOperation operation,

    OperationFilterContext context)

 {

 if (operation.Parameters == null)

 {

 operation.Parameters = new

            List<OpenApiParameter>();

 }

 if (operation.OperationId ==

            "SampleResponseOperation")

 {

 operation.Parameters.Add(new OpenApiParameter

 {

 Name = "x-correlation-id",

 In = ParameterLocation.Header,

 Required = false,

 Schema = new OpenApiSchema { Type =

                 "String", Default = new OpenApiString("42") }

 });

 }

 }

}

Exploring Swagger 49

To define an operation filter, the IOperationFilter interface must be implemented.

In the constructor, you can define all interfaces or objects that have been previously registered in the
dependency inject engine.

The filter then consists of a single method, called Apply, which provides two objects:

•	 OpenApiOperation: An operation where we can add parameters or check the operation
ID of the current call

•	 OperationFilterContext: The filter context that allows you to read ApiDescription,
where you can find the URL of the current endpoint

Finally, to enable the operation filter in Swagger, we will need to register it inside the SwaggerGen
method.

In this method, we should then add the filter, as follows:

builder.Services.AddSwaggerGen(c =>

{

 … removed for brevity

 c.OperationFilter<CorrelationIdOperationFilter>();

});

Here is the result at the UI level; in the endpoint and only for a particular operation ID, we would have
a new mandatory header with a default parameter that, in development, will not have to be inserted:

Figure 3.5 – API key section

Working with Minimal APIs50

This case study helps us a lot when we have an API key that we need to set up and we don’t want to
insert it on every single call.

Operation filter in production
Since Swagger should not be enabled in the production environment, the filter and its default
value will not create application security problems.

We recommend that you disable Swagger in the production environment.

In this section, we figured out how to enable a UI tool that describes the API and allows us to test it.
In the next section, we will see how to enable the call between single-page applications (SPAs) and
the backend via CORS.

Enabling CORS
CORS is a security mechanism whereby an HTTP/S request is blocked if it arrives from a different
domain than the one where the application is hosted. More information can be found in the Microsoft
documentation or on the Mozilla site for developers.

A browser prevents a web page from making requests to a domain other than the domain that serves
that web page. A web page, SPA, or server-side web page can make HTTP requests to several backend
APIs that are hosted in different origins.

This restriction is called the same-origin policy. The same-origin policy prevents a malicious site
from reading data from another site. Browsers don’t block HTTP requests but do block response data.

We, therefore, understand that the CORS qualification, as it relates to safety, must be evaluated with
caution.

The most common scenario is that of SPAs that are released on web servers with different web addresses
than the web server hosting the minimal API:

Figure 3.6 – SPA and minimal API

Enabling CORS 51

A similar scenario is that of microservices, which need to talk to each other. Each microservice will
reside at a particular web address that will be different from the others.

Figure 3.7 – Microservices and minimal APIs

In all these cases, therefore, a CORS problem is encountered.

We now understand the cases in which a CORS request can occur. Now let’s see what the correct
HTTP request flow is and how the browser handles the request.

Working with Minimal APIs52

CORS flow from an HTTP request

What happens when a call leaves the browser for a different address other than the one where the
frontend is hosted?

The HTTP call is executed and it goes all the way to the backend code, which executes correctly.

The response, with the correct data inside, is blocked by the browser. That’s why when we execute a
call with Postman, Fiddler, or any HTTP client, the response reaches us correctly.

Figure 3.8 – CORS flow

Enabling CORS 53

In the following figure, we can see that the browser makes the first call with the OPTIONS method,
to which the backend responds correctly with a 204 status code:

Figure 3.9 – First request for the CORS call (204 No Content result)

Working with Minimal APIs54

In the second call that the browser makes, an error occurs; the strict-origin-when-cross-
origin value is shown in Referrer Policy, which indicates the refusal by the browser to accept data
from the backend:

Figure 3.10 – Second request for the CORS call (blocked by the browser)

When CORS is enabled, in the response to the OPTIONS method call, three headers are inserted with
the characteristics that the backend is willing to respect:

Figure 3.11 – Request for CORS call (with CORS enabled)

Enabling CORS 55

In this case, we can see that three headers are added that define Access-Control-Allow-
Headers, Access-Control-Allow-Methods, and Access-Control-Allow-Origin.

The browser with this information can accept or block the response to this API.

Setting CORS with a policy

Many configurations are possible within a .NET 6 application for activating CORS. We can define
authorization policies in which the four available settings can be configured. CORS can also be activated
by adding extension methods or annotations.

But let us proceed in order.

The CorsPolicyBuilder class allows us to define what is allowed or not allowed within the
CORS acceptance policy.

We have, therefore, the possibility to set different methods, for example:

•	 AllowAnyHeader

•	 AllowAnyMethod

•	 AllowAnyOrigin

•	 AllowCredentials

While the first three methods are descriptive and allow us to enable any settings relating to the header,
method, and origin of the HTTP call, respectively, AllowCredentials allows us to include the
cookie with the authentication credentials.

CORS policy recommendations
We recommend that you don’t use the AllowAny methods but instead filter out the necessary
information to allow for greater security. As a best practice, when enabling CORS, we recommend
the use of these methods:

•	 WithExposedHeaders

•	 WithHeaders

•	 WithOrigins

To simulate a scenario for CORS, we created a simple frontend application with three different buttons.
Each button allows you to test one of the possible configurations of CORS within the minimal API.
We will explain these configurations in a few lines.

Working with Minimal APIs56

To enable the CORS scenario, we have created a single-page application that can be launched on a
web server in memory. We have used LiveReloadServer, a tool that can be installed with the
.NET CLI. We talked about it at the start of the chapter and now it’s time to use it.

After installing it, you need to launch the SPA with the following command:

livereloadserver "{BasePath}\Chapter03\2-CorsSample\Frontend"

Here, BasePath is the folder where you are going to download the examples available on GitHub.

Then you must start the application backend, either through Visual Studio or Visual Studio Code or
through the .NET CLI with the following command:

dotnet run .\Backend\CorsSample.csproj

We’ve figured out how to start an example that highlights the CORS problem; now we need to configure
the server to accept the request and inform the browser that it is aware that the request is coming
from a different source.

Next, we will talk about policy configuration. We will understand the characteristics of the default
policy as well as how to create a custom one.

Configuring a default policy

To configure a single CORS enabling policy, you need to define the behavior in the Program.cs file
and add the desired configurations. Let’s implement a policy and define it as Default.

Then, to enable the policy for the whole application, simply add app.UseCors(); before defining
the handlers:

var builder = WebApplication.CreateBuilder(args);

var corsPolicy = new CorsPolicyBuilder("http://localhost:5200")

 .AllowAnyHeader()

 .AllowAnyMethod()

 .Build();

builder.Services.AddCors(c => c.AddDefaultPolicy(corsPolicy));

var app = builder.Build();

app.UseCors();

app.MapGet("/api/cors", () =>

{

Enabling CORS 57

 return Results.Ok(new { CorsResultJson = true });

});

app.Run();

Configuring custom policies

We can create several policies within an application; each policy may have its own configuration and
each policy may be associated with one or more endpoints.

In the case of microservices, having several policies helps to precisely segment access from a different
source.

In order to configure a new policy, it is necessary to add it and give it a name; this name will give
access to the policy and allow it to be associated with the endpoint.

The customized policy, as in the previous example, is assigned to the entire application:

var builder = WebApplication.CreateBuilder(args);

var corsPolicy = new CorsPolicyBuilder("http://localhost:5200")

 .AllowAnyHeader()

 .AllowAnyMethod()

 .Build();

builder.Services.AddCors(options => options.
AddPolicy("MyCustomPolicy", corsPolicy));

var app = builder.Build();

app.UseCors("MyCustomPolicy");

app.MapGet("/api/cors", () =>

{

 return Results.Ok(new { CorsResultJson = true });

});

app.Run();

We next look at how to apply a single policy to a specific endpoint; to this end, two methods are
available. The first is via an extension method to the IEndpointConventionBuilder interface.
The second method is to add the EnableCors annotation followed by the name of the policy to be
enabled for that method.

Working with Minimal APIs58

Setting CORS with extensions

It is necessary to use the RequireCors method followed by the name of the policy.

With this method, it is then possible to enable one or more policies for an endpoint:

app.MapGet("/api/cors/extension", () =>

{

 return Results.Ok(new { CorsResultJson = true });

})

.RequireCors("MyCustomPolicy");

Setting CORS with an annotation

The second method is to add the EnableCors annotation followed by the name of the policy to be
enabled for that method:

app.MapGet("/api/cors/annotation",
[EnableCors("MyCustomPolicy")] () =>

{

 return Results.Ok(new { CorsResultJson = true });

});

Regarding controller programming, it soon becomes apparent that it is not possible to apply a policy
to all methods of a particular controller. It is also not possible to group controllers and enable the
policy. It is therefore necessary to apply the individual policy to the method or the entire application.

In this section, we found out how to configure browser protection for applications hosted on different
domains.

In the next section, we will start configuring our applications.

Working with global API settings
We have just defined how you can load data with the options pattern within an ASP.NET application.
In this section, we want to describe how you can configure an application and take advantage of
everything we saw in the previous section.

With the birth of .NET Core, the standard has moved from the Web.config file to the appsettings.
json file. The configurations can also be read from other sources, such as other file formats like the
old .ini file or a positional file.

In minimal APIs, the options pattern feature remains unchanged, but in the next few paragraphs,
we will see how to reuse the interfaces or the appsettings.json file structure.

Working with global API settings 59

Configuration in .NET 6

The object provided from .NET is IConfiguration, which allows us to read some specific
configurations inside the appsettings file.

But, as described earlier, this interface does much more than just access a file for reading.

The following extract from the official documentation helps us understand how the interface is the
generic access point that allows us to access the data inserted in various services:

Configuration in ASP.NET Core is performed using one or more configuration
providers. Configuration providers read configuration data from key-value pairs

using a variety of configuration sources.

The following is a list of configuration sources:

•	 Settings files, such as appsettings.json

•	 Environment variables

•	 Azure Key Vault

•	 Azure App Configuration

•	 Command-line arguments

•	 Custom providers, installed or created

•	 Directory files

•	 In-memory .NET objects

(https://docs.microsoft.com/aspnet/core/fundamentals/configuration/)

The IConfiguration and IOptions interfaces, which we will see in the next chapter, are designed
to read data from the various providers. These interfaces are not suitable for reading and editing the
configuration file while the program is running.

The IConfiguration interface is available through the builder object, builder.
Configuration, which provides all the methods needed to read a value, an object, or a connection
string.

After looking at one of the most important interfaces that we will use to configure the application, we
want to define good development practices and use a fundamental building block for any developer:
namely, classes. Copying the configuration into a class will allow us to better enjoy the content
anywhere in the code.

https://docs.microsoft.com/aspnet/core/fundamentals/configuration/

Working with Minimal APIs60

We define classes containing a property and classes corresponding appsettings file:

Configuration classes

public class MyCustomObject

{

    public string? CustomProperty { get; init; }

}

public class MyCustomStartupObject

{

    public string? CustomProperty { get; init; }

}

And here, we bring back the corresponding JSON of the C# class that we just saw:

appsettings.json definition

{

 "MyCustomObject": {

 "CustomProperty": "PropertyValue"

 },

 "MyCustomStartupObject": {

 "CustomProperty": "PropertyValue"

 },

 "ConnectionStrings": {

 "Default": "MyConnectionstringValueInAppsettings"

 }

}

Next, we will be performing several operations.

The first operation we perform creates an instance of the startupConfig object that will be of the
MyCustomStartupObject type. To populate the instance of this object, through IConfiguration,
we are going to read the data from the section called MyCustomStartupObject:

var startupConfig = builder.Configuration.
GetSection(nameof(MyCustomStartupObject)).
Get<MyCustomStartupObject>();

Working with global API settings 61

The newly created object can then be used in the various handlers of the minimal APIs.

Instead, in this second operation, we use the dependency injection engine to request the instance of
the IConfiguration object:

app.MapGet("/read/configurations", (IConfiguration
configuration) =>

{

 var customObject = configuration.

    GetSection(nameof(MyCustomObject)).Get<MyCustomObject>();

With the IConfiguration object, we will retrieve the data similarly to the operation just described.
We select the GetSection(nameof(MyCustomObject)) section and type the object with the
Get<T>() method.

Finally, in these last two examples, we read a single key, present at the root level of the appsettings
file:

MyCustomValue = configuration.
GetValue<string>("MyCustomValue"),

ConnectionString = configuration.
GetConnectionString("Default"),

The configuration.GetValue<T>(“JsonRootKey”) method extracts the value of a key and
converts it into an object; this method is used to read strings or numbers from a root-level property.

In the next line, we can see how you can leverage an IConfiguration method to read
ConnectionString.

In the appsettings file, connection strings are placed in a specific section, ConnectionStrings,
that allows you to name the string and read it. Multiple connection strings can be placed in this section
to exploit it in different objects.

In the configuration provider for Azure App Service, connection strings should be entered with a prefix
that also indicates the SQL provider you are trying to use, as described in the following link: https://
docs.microsoft.com/azure/app-service/configure-common#configure-
connection-strings.

At runtime, connection strings are available as environment variables, prefixed with the following
connection types:

•	 SQLServer: SQLCONNSTR_

•	 MySQL: MYSQLCONNSTR_

•	 SQLAzure: SQLAZURECONNSTR_

https://docs.microsoft.com/azure/app-service/configure-common#configure-connection-strings
https://docs.microsoft.com/azure/app-service/configure-common#configure-connection-strings
https://docs.microsoft.com/azure/app-service/configure-common#configure-connection-strings

Working with Minimal APIs62

•	 Custom: CUSTOMCONNSTR_

•	 PostgreSQL: POSTGRESQLCONNSTR_

For completeness, we will bring back the entire code just described in order to have a better general
picture of how to exploit the IConfiguration object inside the code:

var builder = WebApplication.CreateBuilder(args);

var startupConfig = builder.Configuration.
GetSection(nameof(MyCustomStartupObject)).
Get<MyCustomStartupObject>();

app.MapGet("/read/configurations", (IConfiguration
configuration) =>

{

 var customObject = configuration.GetSection

    (nameof(MyCustomObject)).Get<MyCustomObject>();

 return Results.Ok(new

 {

 MyCustomValue = configuration.GetValue

        <string>("MyCustomValue"),

 ConnectionString = configuration.

         GetConnectionString("Default"),

 CustomObject = customObject,

 StartupObject = startupConfig

 });

})

.WithName("ReadConfigurations");

We’ve seen how to take advantage of the appsettings file with connection strings, but very often,
we have many different files for each environment. Let’s see how to take advantage of one file for each
environment.

Priority in appsettings files

The appsettings file can be managed according to the environments in which the application is
located. In this case, the practice is to place key information for that environment in the appsettings.
{ENVIRONMENT}.json file.

Working with global API settings 63

The root file (that is, appsettings.json) should be used for the production environment only.

For example, if we created these examples in the two files for the “Priority” key, what would we get?

appsettings.json

"Priority": "Root"

appsettings.Development.json

"Priority": "Dev"

If it is a Development environment, the value of the key would result in Dev, while in a Production
environment, the value would result in Root.

What would happen if the environment was anything other than Production or Development? For
example, if it were called Stage? In this case, having not specified any appsettings.Stage.json
file, the read value would be that of one of the appsettings.json files and therefore, Root.

However, if we specified the appsettings.Stage.json file, the value would be read from the
that file.

Next, let’s visit the Options pattern. There are objects that the framework provides to load configuration
information upon startup or when changes are made by the systems department. Let’s go over how.

Options pattern

The options pattern uses classes to provide strongly typed access to groups of related settings, that
is, when configuration settings are isolated by scenario into separate classes.

The options pattern will be implemented with different interfaces and different functionalities.
Each interface (see the following subsection) has its own features that help us achieve certain goals.

But let’s start in order. We define an object for each type of interface (we will do it to better represent
the examples), but the same class can be used to register more options inside the configuration file.
It is important to keep the structure of the file identical:

public class OptionBasic

{

 public string? Value { get; init; }

}

 public class OptionSnapshot

 {

Working with Minimal APIs64

     public string? Value { get; init; }

 }

 public class OptionMonitor

 {

 public string? Value { get; init; }

 }

 public class OptionCustomName

 {

 public string? Value { get; init; }

 }

Each option is registered in the dependency injection engine via the Configure method, which
also requires the registration of the T type present in the method signature. As you can see, in the
registration phase, we declared the types and the section of the file where to retrieve the information,
and nothing more:

builder.Services.Configure<OptionBasic>(builder.Configuration.
GetSection("OptionBasic"));

builder.Services.Configure<OptionMonitor>(builder.
Configuration.GetSection("OptionMonitor"));

builder.Services.Configure<OptionSnapshot>(builder.
Configuration.GetSection("OptionSnapshot"));

builder.Services.Configure<OptionCustomName>("CustomName1",
builder.Configuration.GetSection("CustomName1"));

builder.Services.Configure<OptionCustomName>("CustomName2",
builder.Configuration.GetSection("CustomName2"));

We have not yet defined how the object should be read, how often, and with what type of interface.

The only thing that changes is the parameter, as seen in the last two examples of the preceding code
snippet. This parameter allows you to add a name to the option type. The name is required to match
the type used in the method signature. This feature is called named options.

Working with global API settings 65

Different option interfaces

Different interfaces can take advantage of the recordings you just defined. Some support named
options and some do not:

•	 IOptions<TOptions>:

	� Does not support the following:

	� Reading of configuration data after the app has started

	� Named options

	� Is registered as a singleton and can be injected into any service lifetime

•	 IOptionsSnapshot<TOptions>:

	� Is useful in scenarios where options should be recomputed on every request

	� Is registered as scoped and therefore cannot be injected into a singleton service

	� Supports named options

•	 IOptionsMonitor<TOptions>:

	� Is used to retrieve options and manage options notifications for TOptions instances

	� Is registered as a singleton and can be injected into any service lifetime

	� Supports the following:

	� Change notifications

	� Named options

	� Reloadable configuration

	� Selective options invalidation (IOptionsMonitorCache<TOptions>)

We want to point you to the use of IOptionsFactory<TOptions>, which is responsible for
creating new instances of options. It has a single Create method. The default implementation takes all
registered IConfigureOptions<TOptions> and IPostConfigureOptions<TOptions>
and performs all configurations first, followed by post-configuration (https://docs.microsoft.
com/aspnet/core/fundamentals/configuration/options#options-interfaces).

https://docs.microsoft.com/aspnet/core/fundamentals/configuration/options#options-interfaces
https://docs.microsoft.com/aspnet/core/fundamentals/configuration/options#options-interfaces

Working with Minimal APIs66

The Configure method can also be followed by another method in the configuration pipeline.
This method is called PostConfigure and is intended to modify the configuration each time it is
configured or reread. Here is an example of how to record this behavior:

builder.Services.PostConfigure<MyConfigOptions>(myOptions =>

{

 myOptions.Key1 = "my_new_value_post_configuration";

});

Putting it all together

Having defined the theory of these numerous interfaces, it remains for us to see IOptions at work
with a concrete example.

Let’s see the use of the three interfaces just described and the use of IOptionsFactory, which,
along with the Create method and with the named options function, retrieves the correct instance
of the object:

app.MapGet("/read/options", (IOptions<OptionBasic>
optionsBasic,

 IOptionsMonitor<OptionMonitor> optionsMonitor,

 IOptionsSnapshot<OptionSnapshot> optionsSnapshot,

 IOptionsFactory<OptionCustomName> optionsFactory) =>

{

 return Results.Ok(new

 {

 Basic = optionsBasic.Value,

 Monitor = optionsMonitor.CurrentValue,

 Snapshot = optionsSnapshot.Value,

 Custom1 = optionsFactory.Create("CustomName1"),

 Custom2 = optionsFactory.Create("CustomName2")

 });

})

.WithName("ReadOptions");

Working with global API settings 67

In the previous code snippet, we want to bring attention to the use of the different interfaces available.

Each individual interface used in the previous snippet has a particular life cycle that characterizes its
behavior. Finally, each interface has slight differences in the methods, as we have already described
in the previous paragraphs.

IOptions and validation

Last but not least is the validation functionality of the data present in the configuration. This is very
useful when the team that has to release the application still performs manual or delicate operations
that need to be at least verified by the code.

Before the advent of .NET Core, very often, the application would not start because of an incorrect
configuration. Now, with this feature, we can validate the data in the configuration and throw errors.

Here is an example:

Register option with validation

builder.Services.AddOptions<ConfigWithValidation>().
Bind(builder.Configuration.
GetSection(nameof(ConfigWithValidation)))

.ValidateDataAnnotations();

app.MapGet("/read/options", (IOptions<ConfigWithValidation>
optionsValidation) =>

{

 return Results.Ok(new

 {

 Validation = optionsValidation.Value

 });

})

.WithName("ReadOptions");

This is the configuration file where an error is explicitly reported:

Appsettings section for configuration validation

"ConfigWithValidation": {

 "Email": "andrea.tosato@hotmail.it",

 "NumericRange": 1001

 }

Working with Minimal APIs68

And here is the class containing the validation logic:

public class ConfigWithValidation

{

 [RegularExpression(@"^([\w\.\-]+)@([\w\-]+)((\.(\w)

                      {2,})+)$")]

 public string? Email { get; set; }

 [Range(0, 1000, ErrorMessage = "Value for {0} must be

                                    between {1} and {2}.")]

 public int NumericRange { get; set; }

}

The application then encounters errors while using the particular configuration and not at startup.
This is also because, as we have seen before, IOptions could reload information following a change
in appsettings:

Error validate option

Microsoft.Extensions.Options.OptionsValidationException:
DataAnnotation validation failed for 'ConfigWithValidation'
members: 'NumericRange' with the error: 'Value for NumericRange
must be between 0 and 1000.'.

Best practice for using validation in IOptions
This setting is not suitable for all application scenarios. Only some options can have formal
validations; if we think of a connection string, it is not necessarily formally incorrect, but the
connection may not be working.

Be cautious about applying this feature, especially since it reports errors at runtime and not
during startup and gives an Internal Server Error, which is not a best practice in scenarios that
should be handled.

Everything we’ve seen up to this point is about configuring the appsettings.json file, but what
if we wanted to use other sources for configuration management? We’ll look at that in the next section.

Configuration sources

As we mentioned at the beginning of the section, the IConfiguration interface and all variants
of IOptions work not only with the appsettings file but also on different sources.

Working with global API settings 69

Each source has its own characteristics, and the syntax for accessing objects is very similar between
providers. The main problem is when we must define a complex object or an array of objects; in this
case, we will see how to behave and be able to replicate the dynamic structure of a JSON file.

Let’s look at two very common use cases.

Configuring an application in Azure App Service

Let’s start with Azure, and in particular, the Azure Web Apps service.

On the Configuration page, there are two sections: Application settings and Connection strings.

In the first section, we need to insert the keys and values or JSON objects that we saw in the previous
examples.

In the Connection strings section, you can insert the connection strings that are usually inserted in
the appsettings.json file. In this section, in addition to the textual string, it is necessary to set
the connection type, as we saw in the Configuration in .NET 6 section.

Figure 3.12 – Azure App Service Application settings

Inserting an object

To insert an object, we must specify the parent for each key.

The format is as follows:

parent__key

Note that there are two underscores.

Working with Minimal APIs70

The object in the JSON file would be defined as follows:

"MyCustomObject": {

 "CustomProperty": "PropertyValue"

 }

So, we should write MyCustomObject__CustomProperty.

Inserting an array

Inserting an array is much more verbose.

The format is as follows:

parent__child__ArrayIndexNumber_key

The array in the JSON file would be defined as follows:

{

 "MyCustomArray": {

 "CustomPropertyArray": [

 { "CustomKey": "ValueOne" },

 { "CustomKey ": "ValueTwo" }

]

 }

}

So, to access the ValueOne value, we should write the following: MyCustomArray__
CustomPropertyArray__0__CustomKey.

Configuring an application in Docker

If we are developing for containers and therefore for Docker, appsettings files are usually replaced
in the docker-compose file, and very often in the override file, because it behaves analogously
to the settings files divided by the environment.

Working with global API settings 71

We want to provide a brief overview of the features that are usually leveraged to configure an application
hosted in Docker. Let’s see in detail how to define root keys and objects, and how to set the connection
string. Here is an example:

app.MapGet("/env-test", (IConfiguration configuration) =>

{

 var rootProperty = configuration.

    GetValue<string>("RootProperty");

 var sampleVariable = configuration.

    GetValue<string>("RootSettings:SampleVariable");

 var connectionString = configuration.

    GetConnectionString("SqlConnection");

 return Results.Ok(new

 {

 RootProperty = rootProperty,

 SampleVariable = sampleVariable,

 Connection String = connectionString

 });

})

.WithName("EnvironmentTest");

Minimal APIs that use configuration

The docker-compose.override.yaml file is as follows:

services:

 dockerenvironment:

 environment:

 - ASPNETCORE_ENVIRONMENT=Development

 - ASPNETCORE_URLS=https://+:443;http://+:80

 - RootProperty=minimalapi-root-value

 - RootSettings__SampleVariable=minimalapi-
variable-value

 - ConnectionStrings__
SqlConnection=Server=minimal.db;Database=minimal_db;User
Id=sa;Password=Taggia42!

Working with Minimal APIs72

There is only one application container for this example, and the service that instantiates it is called
dockerenvironment.

In the configuration section, we can see three particularities that we are going to analyze line by line.

The snippet we want to show you has several very interesting components: a property in the configuration
root, an object composed of a single property, and a connection string to a database.

In this first configuration, you are going to set a property that is the root of the configurations. In this
case, it is a simple string:

First configuration

- RootProperty=minimalapi-root-value

In this second configuration, we are going to set up an object:

Second configuration

- RootSettings__SampleVariable=minimalapi-variable-value

The object is called RootSettings, while the only property it contains is called SampleVariable.
This object can be read in different ways. We recommend using the Ioptions object that we have
seen extensively before. In the preceding example, we show how to access a single property present
in an object via code.

In this case, via code, you need to use the following notation to access the value:
RootSettings:SampleVariable. This approach is useful if you need to read a single property,
but we recommend using the Ioptions interfaces to access the object.

In this last example, we show you how to set the connection string called SqlConnection. This way,
it will be easy to retrieve the information from the base methods available on Iconfiguration:

Third configuration

- ConnectionStrings__SqlConnection=Server=minimal.
db;Database=minimal_db;User Id=sa;Password=Taggia42!

To r e a d t h e i n f o r m a t i o n , i t i s n e c e s s a r y t o e x p l o i t t h i s m e t h o d :
GetConnectionString(“SqlConnection”).

There are a lot of scenarios for configuring our applications; in the next section, we will also see how
to handle errors.

Error handling 73

Error handling
Error handling is one of the features that every application must provide. The representation of an
error allows the client to understand the error and possibly handle the request accordingly. Very often,
we have our own customized methods of handling errors.

Since what we’re describing is a key functionality of the application, we think it’s fair to see what the
framework provides and what is more correct to use.

Traditional approach

.NET provides the same tool for minimal APIs that we can implement in traditional development: a
Developer Exception Page. This is nothing but middleware that reports the error in plain text format.
This middleware can’t be removed from the ASP.NET pipeline and works exclusively in the development
environment (https://docs.microsoft.com/aspnet/core/fundamentals/error-
handling).

Figure 3.13 – Minimal APIs pipeline, ExceptionHandler

If exceptions are raised within our code, the only way to catch them in the application layer is through
middleware that is activated before sending the response to the client.

https://docs.microsoft.com/aspnet/core/fundamentals/error-handling
https://docs.microsoft.com/aspnet/core/fundamentals/error-handling

Working with Minimal APIs74

Error handling middleware is standard and can be implemented as follows:

app.UseExceptionHandler(exceptionHandlerApp =>

{

 exceptionHandlerApp.Run(async context =>

 {

 context.Response.StatusCode = StatusCodes.

        Status500InternalServerError;

 context.Response.ContentType = Application.Json;

 var exceptionHandlerPathFeature = context.Features.

          Get<IExceptionHandlerPathFeature>()!;

 var errorMessage = new

 {

 Message = exceptionHandlerPathFeature.Error.Message

 };

 await context.Response.WriteAsync

        (JsonSerializer.Serialize(errorMessage));

 if (exceptionHandlerPathFeature?.

             Error is FileNotFoundException)

 {

 await context.Response.

             WriteAsync(" The file was not found.");

 }

 if (exceptionHandlerPathFeature?.Path == "/")

 {

 await context.Response.WriteAsync("Page: Home.");

 }

 });

});

We have shown here a possible implementation of the middleware. In order to be implemented, the
UseExceptionHandler method must be exploited, allowing the writing of management code
for the whole application.

Error handling 75

Through the var functionality called exceptionHandlerPathFeature = context.
Features.Get<IExceptionHandlerPathFeature>()!;, we can access the error stack
and return the information of interest for the caller in the output:

app.MapGet("/ok-result", () =>

{

 throw new ArgumentNullException("taggia-parameter",

         "Taggia has an error");

})

.WithName("OkResult");

When an exception occurs in the code, as in the preceding example, the middleware steps in and
handles the return message to the client.

If the exception were to occur in internal application stacks, the middleware would still intervene to
provide the client with the correct error and appropriate indication.

Problem Details and the IETF standard

Problem Details for HTTP APIs is an IETF standard that was approved in 2016. This standard allows
a set of information to be returned to the caller with standard fields and JSON notations that help
identify the error.

HTTP status codes are sometimes not enough to convey enough information about an error to be
useful. While the humans behind web browsers can be informed about the nature of the problem
with an HTML response body, non-human consumers, such as machine, PC, and server, of so-called
HTTP APIs usually cannot.

This specification defines simple JSON and XML document formats to suit this purpose. They are
designed to be reused by HTTP APIs, which can identify distinct problem types specific to their needs.

Thus, API clients can be informed of both the high-level error class and the finer-grained details of
the problem (https://datatracker.ietf.org/doc/html/rfc7807).

In .NET, there is a package with all the functionality that meets the IETF standard.

The package is called Hellang.Middleware.ProblemDetails, and you can download it at
the following address: https://www.nuget.org/packages/Hellang.Middleware.
ProblemDetails/.

https://datatracker.ietf.org/doc/html/rfc7807
https://www.nuget.org/packages/Hellang.Middleware.ProblemDetails/
https://www.nuget.org/packages/Hellang.Middleware.ProblemDetails/

Working with Minimal APIs76

Let’s see now how to insert the package into the project and configure it:

var builder = WebApplication.CreateBuilder(args);

builder.Services.
TryAddSingleton<IActionResultExecutor<ObjectResult>,
ProblemDetailsResultExecutor>();

builder.Services.AddProblemDetails(options =>

{   options.MapToStatusCode<NotImplementedException>

    (StatusCodes.Status501NotImplemented);

});

var app = builder.Build();

app.UseProblemDetails();

As you can see, there are only two instructions to make this package work:

•	 builder.Services.AddProblemDetails

•	 app.UseProblemDetails();

Since, in the minimal APIs, the IActionResultExecutor interface is not present in the
ASP.NET pipeline, it is necessary to add a custom class to handle the response in case of an error.

To do this, you need to add a class (the following) and register it in the dependency injection engine:
builder.Services.TryAddSingleton<IActionResultExecutor<ObjectResult>,
ProblemDetailsResultExecutor>();.

Here is the class to support the package, also under minimal APIs:

public class ProblemDetailsResultExecutor :
IActionResultExecutor<ObjectResult>

{

    public virtual Task ExecuteAsync(ActionContext context,

    ObjectResult result)

{

 ArgumentNullException.ThrowIfNull(context);

 ArgumentNullException.ThrowIfNull(result);

 var executor = Results.Json(result.Value, null,

        "application/problem+json", result.StatusCode);

Error handling 77

 return executor.ExecuteAsync(context.HttpContext);

 }

}

As mentioned earlier, the standard for handling error messages has been present in the IETF standard
for several years, but for the C# language, it is necessary to add the package just mentioned.

Now, let’s see how this package goes about handling errors on some endpoints that we report here:

app.MapGet("/internal-server-error", () =>

{

 throw new ArgumentNullException("taggia-parameter",

    "Taggia has an error");

})

 .Produces<ProblemDetails>(StatusCodes.

     Status500InternalServerError)

 .WithName("internal-server-error");

We throw an application-level exception with this endpoint. In this case, the ProblemDetails
middleware goes and returns a JSON error consistent with the error. We then have the handling of
an unhandled exception for free:

{

 "type": "https://httpstatuses.com/500",

 "title": "Internal Server Error",

 "status": 500,

 "detail": "Taggia has an error (Parameter 'taggia-

     parameter')",

 "exceptionDetails": [

 {

 ------- for brevity

 }

],

 "traceId": "00-f6ff69d6f7ba6d2692d87687d5be75c5-

     e734f5f081d7a02a-00"

}

Working with Minimal APIs78

By inserting additional configurations in the Program file, you can map some specific exceptions
to HTTP errors. Here is an example:

builder.Services.AddProblemDetails(options =>

{

   options.MapToStatusCode<NotImplementedException>

      (StatusCodes.Status501NotImplemented);

});

The code with the NotImplementedException exception is mapped to HTTP error code 501:

app.MapGet("/not-implemented-exception", () =>

{

 throw new NotImplementedException

      ("This is an exception thrown from a Minimal API.");

})

 .Produces<ProblemDetails>(StatusCodes.

     Status501NotImplemented)

 .WithName("NotImplementedExceptions");

Finally, it is possible to create extensions to the ProblemDetails class of the framework with
additional fields or to call the base method by adding custom text.

Here are the last two examples of MapGet endpoint handlers:

app.MapGet("/problems", () =>

{

 return Results.Problem(detail: "This will end up in

                                    the 'detail' field.");

})

 .Produces<ProblemDetails>(StatusCodes.Status400BadRequest)

 .WithName("Problems");

app.MapGet("/custom-error", () =>

{

 var problem = new OutOfCreditProblemDetails

Error handling 79

 {

 Type = "https://example.com/probs/out-of-credit",

 Title = "You do not have enough credit.",

 Detail = "Your current balance is 30,

        but that costs 50.",

 Instance = "/account/12345/msgs/abc",

 Balance = 30.0m, Accounts =

        { "/account/12345", "/account/67890" }

 };

 return Results.Problem(problem);

})

 .Produces<OutOfCreditProblemDetails>(StatusCodes.

     Status400BadRequest)

 .WithName("CreditProblems");

app.Run();

public class OutOfCreditProblemDetails : ProblemDetails

{

 public OutOfCreditProblemDetails()

 {

 Accounts = new List<string>();

 }

 public decimal Balance { get; set; }

 public ICollection<string> Accounts { get; }

}

Working with Minimal APIs80

Summary
In this chapter, we have seen several advanced aspects regarding the implementation of minimal APIs.
We explored Swagger, which is used to document APIs and provide the developer with a convenient,
working debugging environment. We saw how CORS handles the issue of applications hosted on
different addresses other than the current API. Finally, we saw how to load configuration information
and handle unexpected errors in the application.

We explored the nuts and bolts that will allow us to be productive in a short amount of time.

In the next chapter, we will add a fundamental building block for SOLID pattern-oriented programming,
namely the dependency injection engine, which will help us to better manage the application code
scattered in the various layers.

Part 2:
What’s New in .NET 6?

In the second part of the book, we want to show you the features of the .NET 6 framework and how
they can also be used in minimal APIs.

We will cover the following chapters in this section:

•	 Chapter 4, Dependency Injection in a Minimal API Project

•	 Chapter 5, Using Logging to Identify Errors

•	 Chapter 6, Exploring Validation and Mapping

•	 Chapter 7, Integration with the Data Access Layer

4
Dependency Injection in a

Minimal API Project

In this chapter of the book, we will discuss some basic topics of minimal APIs in .NET 6.0. We will
learn how they differ from the controller-based Web APIs that we were used to using in the previous
version of .NET. We will also try to underline the pros and the cons of this new approach of writing APIs.

In this chapter, we will be covering the following topics:

•	 What is dependency injection?

•	 Implementing dependency injection in a minimal API project

Technical requirements
To follow the explanations in this chapter, you will need to create an ASP.NET Core 6.0 Web API
application. You can refer the Technical requirements section of Chapter 2, Exploring Minimal APIs
and Their Advantages to know how to do it.

All the code samples in this chapter can be found in the GitHub repository for this book at https://
github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/
Chapter04.

https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter04
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter04
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter04

Dependency Injection in a Minimal API Project84

What is dependency injection?
For a while, .NET has natively supported the dependency injection (often referred to as DI) software
design pattern.

Dependency injection is a way to implement in .NET the Inversion of Control (IoC) pattern between
service classes and their dependencies. By the way, in .NET, many fundamental services are built with
dependency injection, such as logging, configuration, and other services.

Let’s look at a practical example to get a good understanding of how it works.

Generally speaking, a dependency is an object that depends on another object. In the following
example, we have a LogWriter class with only one method inside, called Log:

public class LogWriter

{

 public void Log(string message)

 {

 Console.WriteLine($"LogWriter.Write

 (message: \"{message}\")");

 }

}

Other classes in the project, or in another project, can create an instance of the LogWriter class
and use the Log method.

Take a look at the following example:

public class Worker

{

 private readonly LogWriter _logWriter = new LogWriter();

 protected async Task ExecuteAsync(CancellationToken

                                      stoppingToken)

 {

 while (!stoppingToken.IsCancellationRequested)

 {

 _logWriter.Log($"Worker running at:

             {DateTimeOffset.Now}");

 await Task.Delay(1000, stoppingToken);

 }

What is dependency injection? 85

 }

}

This class depends directly on the LogWriter class, and it’s hardcoded in each class of your projects.

This means that you will have some issues if you want to change the Log method; for instance, you
will have to replace the implementation in each class of your solution.

The preceding implementation has some issues if you want to implement unit tests in your solution.
It’s not easy to create a mock of the LogWriter class.

Dependency injection can solve these problems with some changes in our code:

1.	 Use an interface to abstract the dependency.

2.	 Register the dependency injection in the built-in service connecte to .NET.

3.	 Inject the service into the constructor of the class.

The preceding things might seem like they require big change in your code, but they are very easy
to implement.

Let’s see how we can achieve this goal with our previous example:

1.	 First, we will create an ILogWriter interface with the abstraction of our logger:

public interface ILogWriter

{

 void Log(string message);

}

2.	 Next, implement this ILogWriter interface in a real class called ConsoleLogWriter:

public class ConsoleLogWriter : ILogWriter

{

 public void Log(string message)

 {

 Console.WriteLine($"ConsoleLogWriter.

 Write(message: \"{message}\")");

 }

}

Dependency Injection in a Minimal API Project86

3.	 Now, change the Worker class and replace the explicit LogWriter class with the new
ILogWriter interface:

public class Worker

{

 private readonly ILogWriter _logWriter;

 public Worker(ILogWriter logWriter)

 {

 _logWriter = logWriter;

 }

 protected async Task ExecuteAsync

      (CancellationToken stoppingToken)

 {

 while (!stoppingToken.IsCancellationRequested)

 {

 _logWriter.Log($"Worker running at:

                             {DateTimeOffset.Now}");

 await Task.Delay(1000, stoppingToken);

 }

 }

}

As you can see, it’s very easy to work in this new way, and the advantages are substantial. Here
are a few advantages of dependency injection:

	� Maintainability

	� Testability

	� Reusability

Now we need to perform the last step, that is, register the dependency when the application
starts up.

What is dependency injection? 87

4.	 At the top of the Program.cs file, add this line of code:

builder.Services.AddScoped<ILogWriter,
ConsoleLogWriter>();

In the next section, we will discuss the difference between dependency injection lifetimes, another
concept that you need to understand before using dependency injection in your minimal API project.

Understanding dependency injection lifetimes

In the previous section, we learned the benefits of using dependency injection in our project and how
to transform our code to use it.

In one of the last paragraphs, we added our class as a service to ServiceCollection of .NET.

In this section, we will try to understand the difference between each dependency injection’s lifetime.

The service lifetime defines how long an object will be alive after it has been created by the container.

When they are registered, dependencies require a lifetime definition. This defines the conditions when
a new service instance is created.

In the following list, you can find the lifetimes defined in .NET:

•	 Transient: A new instance of the class is created every time it is requested.

•	 Scoped: A new instance of the class is created once per scope, for instance, for the same HTTP
request.

•	 Singleton: A new instance of the class is created only on the first request. The next request will
use the same instance of the same class.

Very often, in web applications, you only find the first two lifetimes, that is, transient and scoped.

If you have a particular use case that requires a singleton, it’s not prohibited, but for best practice, it
is recommended to avoid them in web applications.

In the first two cases, transient and scoped, the services are disposed of at the end of the request.

In the next section, we will see how to implement all the concepts that we have mentioned in the last
two sections (the definition of dependency injection and its lifetime) in a short demo that you can
use as a starting point for your next project.

Dependency Injection in a Minimal API Project88

Implementing dependency injection in a minimal API
project
After understanding how to use dependency injection in an ASP.NET Core project, let’s try to
understand how to use dependency injection in our minimal API project, starting with the default
project using the WeatherForecast endpoint.

This is the actual code of the WeatherForecast GET endpoint:

app.MapGet("/weatherforecast", () =>

{

 var forecast = Enumerable.Range(1, 5).Select(index =>

 new WeatherForecast

 (

 DateTime.Now.AddDays(index),

 Random.Shared.Next(-20, 55),

 summaries[Random.Shared.

 Next(summaries.Length)]

))

 .ToArray();

 return forecast;

});

As we mentioned before, this code works but it’s not easy to test it, especially the creation of the new
values of the weather.

The best choice is to use a service to create fake values and use it with dependency injection.

Let’s see how we can better implement our code:

1.	 First of all, in the Program.cs file, add a new interface called IWeatherForecastService
and define a method that returns an array of the WeatherForecast entity:

public interface IWeatherForecastService

{

 WeatherForecast[] GetForecast();

}

Implementing dependency injection in a minimal API project 89

2.	 The next step is to create the real implementation of the class inherited from the interface.

The code should look like this:

public class WeatherForecastService :
IWeatherForecastService

{

}

3.	 Now cut and paste the code from the project template inside our new implementation of the
service. The final code looks like this:

public class WeatherForecastService :
IWeatherForecastService

{

 public WeatherForecast[] GetForecast()

 {

 var summaries = new[]

 {

 "Freezing", "Bracing", "Chilly", "Cool",

            "Mild", "Warm", "Balmy", "Hot", "Sweltering",

            "Scorching"

 };

 var forecast = Enumerable.Range(1, 5).

        Select(index =>

 new WeatherForecast

 (

      DateTime.Now.AddDays(index),

       Random.Shared.Next(-20, 55),

        summaries[Random.Shared.Next

            (summaries.Length)]

))

 .ToArray();

 return forecast;

 }

}

Dependency Injection in a Minimal API Project90

4.	 We are now ready to add our implementation of WeatherForecastService as a
dependency injection in our project. To do that, insert the following line below the first line
of code in the Program.cs file:

builder.Services.AddScoped<IWeatherForecastService,
WeatherForecastService>();

When the application starts, insert our service into the services collection. Our work is not finished yet.

We need to use our service in the default MapGet implementation of the WeatherForecast
endpoint.

The minimal API has his own parameter binding implementation and it’s very easy to use.

First of all, to implement our service with dependency injection, we need to remove all the old code
from the endpoint.

The code of the endpoint, after removing the code, looks like this:

app.MapGet("/weatherforecast", () =>

{

});

We can improve our code and use the dependency injection very easily by simply replacing the old
code with the new code:

app.MapGet("/weatherforecast", (IWeatherForecastService
weatherForecastService) =>

{

 return weatherForecastService.GetForecast();

});

In the minimal API project, the real implementations of the services in the service collection are
passed as parameters to the functions and you can use them directly.

From time to time, you may have to use a service from the dependency injection directly in the main
function during the startup phase. In this case, you must retrieve the instance of the implementation
directly from the services collection, as shown in the following code snippet:

using (var scope = app.Services.CreateScope())

{

 var service = scope.ServiceProvider.GetRequiredService

                  <IWeatherForecastService>();

Summary 91

 service.GetForecast();

}

In this section, we have implemented dependency injection in a minimal API project, starting from
the default template.

We reused the existing code but implemented it with logic that’s more geared toward an architecture
that’s better suited to being maintained and tested in the future.

Summary
Dependency injection is a very important approach to implement in modern applications. In this
chapter, we learned what dependency injection is and discussed its fundamentals. Then, we saw how
to use dependency injection in a minimal API project.

In the next chapter, we will focus on another important layer of modern applications and discuss how
to implement a logging strategy in a minimal API project.

5
Using Logging

to Identify Errors

In this chapter, we will begin to learn about the logging tools that .NET provides us with. A logger is one
of the tools that developers must use to debug an application or understand its failure in production.
The log library has been built into ASP.NET with several features enabled by design. The purpose of
this chapter is to delve into the things we take for granted and add more information as we go.

The themes we will touch on in this chapter are as follows:

•	 Exploring logging in .NET

•	 Leveraging the logging framework

•	 Storing a structured log with Serilog

Technical requirements
As reported in the previous chapters, it will be necessary to have the .NET 6 development framework.

There are no special requirements in this chapter for beginning to test the examples described.

All the code samples in this chapter can be found in the GitHub repository for this book at https://
github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/
Chapter05.

Exploring logging in .NET
ASP.NET Core templates create a WebApplicationBuilder and a WebApplication, which provide a
simplified way to configure and run web applications without a startup class.

https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter05
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter05
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter05

Using Logging to Identify Errors94

As mentioned previously, with .NET 6, the Startup.cs file is eliminated in favor of the existing
Program.cs file. All startup configurations are placed in this file, and in the case of minimal APIs,
endpoint implementations are also placed.

What we have just described is the starting point of every .NET application and its various configurations.

Logging into an application means tracking the evidence in different points of the code to check
whether it is running as expected. The purpose of logging is to track over time all the conditions that
led to an unexpected result or event in the application. Logging in an application can be useful both
during development and while the application is in production.

However, for logging, as many as four providers are added for tracking application information:

•	 Console: The Console provider logs output to the console. This log is unusable in production
because the console of a web application is usually not visible. This kind of log is useful during
development to make logging fast when you are running your app under Kestrel on your
desktop machine in the app console window.

•	 Debug: The Debug provider writes log output by using the System.Diagnostics.
Debug class. When we develop, we are used to seeing this section in the Visual Studio output
window.

Under the Linux operating system, information is tracked depending on the distribution in
the following locations: /var/log/message and /var/log/syslog.

•	 EventSource: On Windows, this information can be viewed in the EventTracing window.

•	 EventLog (only when running on Windows): This information is displayed in the native Windows
window, so you can only see it if you run the application on the Windows operating system.

A new feature in the latest .NET release
New logging providers have been added in the latest versions of .NET. However, these providers
are not enabled within the framework.

Use these extensions to enable new logging scenarios: AddSystemdConsole ,
AddJsonConsole, and AddSimpleConsole.

You can find more details on how to configure the log and what the basic ASP.NET settings are at
this link: https://docs.microsoft.com/aspnet/core/fundamentals/host/
generic-host.

We’ve started to see what the framework gives us; now we need to understand how to leverage it within
our applications. Before proceeding, we need to understand what a logging layer is. It is a fundamental
concept that will help us break down information into different layers and enable them as needed:

https://docs.microsoft.com/aspnet/core/fundamentals/host/generic-host
https://docs.microsoft.com/aspnet/core/fundamentals/host/generic-host

Exploring logging in .NET 95

Table 5.1 – Log levels

Table 5.1 shows the most verbose levels down to the least verbose level.

To learn more, you can read the article titled Logging in .NET Core and ASP.NET Core, which explains
the logging process in detail here: https://docs.microsoft.com/aspnet/core/
fundamentals/logging/.

If we select our log level as Information, everything at this level will be tracked down to the
Critical level, skipping Debug and Trace.

We’ve seen how to take advantage of the log layers; now, let’s move on to writing a single statement
that will log information and can allow us to insert valuable content into the tracking system.

https://docs.microsoft.com/aspnet/core/fundamentals/logging/
https://docs.microsoft.com/aspnet/core/fundamentals/logging/

Using Logging to Identify Errors96

Configuring logging

To start using the logging component, you need to know a couple of pieces of information to start
tracking data. Each logger object (ILogger<T>) must have an associated category. The log category
allows you to segment the tracking layer with a high definition. For example, if we want to track
everything that happens in a certain class or in an ASP.NET controller, without having to rewrite all
our code, we need to enable the category or categories of our interest.

A category is a T class. Nothing could be simpler. You can reuse typed objects of the class where the log
method is injected. For example, if we’re implementing MyService, and we want to track everything
that happens in the service with the same category, we just need to request an ILogger<MyService>
object instance from the dependency injection engine.

Once the log categories are defined, we need to call the ILogger<T> object and take advantage of
the object’s public methods. In the previous section, we looked at the log layers. Each log layer has
its own method for tracking information. For example, LogDebug is the method specified to track
information with a Debug layer.

Let’s now look at an example. I created a record in the Program.cs file:

internal record CategoryFiltered();

This record is used to define a particular category of logs that I want to track only when necessary. To
do this, it is advisable to define a class or a record as an end in itself and enable the necessary trace level.

A record that is defined in the Program.cs file has no namespace; we must remember this when
we define the appsettings file with all the necessary information.

If the log category is within a namespace, we must consider the full name of the class. In this case, it
is LoggingSamples.Categories.MyCategoryAlert:

namespace LoggingSamples.Categories

{

    public class MyCategoryAlert

    {

    }

}

If we do not specify the category, as in the following example, the selected log level is the default:

  "Logging": {

    "LogLevel": {

      "Default": "Information",

      "Microsoft.AspNetCore": "Warning",

Exploring logging in .NET 97

      "CategoryFiltered": "Information",

      "LoggingSamples.Categories.MyCategoryAlert": "Debug"

    }

  }

Anything that comprises infrastructure logs, such as Microsoft logs, stays in special categories such
as Microsoft.AspNetCore or Microsoft.EntityFrameworkCore.

The full list of Microsoft log categories can be found at the following link:

https://docs.microsoft.com/aspnet/core/fundamentals/logging/#aspnet-
core-and-ef-core-categories

Sometimes, we need to define certain log levels depending on the tracking provider. For example,
during development, we want to see all the information in the log console, but we only want to see
errors in the log file.

To do this, we don’t need to change the configuration code but just define its level for each provider.
The following is an example that shows how everything that is tracked in the Microsoft categories is
shown from the Information layer to the ones below it:

{

  "Logging": {      // Default, all providers.

    "LogLevel": {

      "Microsoft": "Warning"

    },

    "Console": { // Console provider.

      "LogLevel": {

        "Microsoft": "Information"

      }

    }

  }

}

Now that we’ve figured out how to enable logging and how to filter the various categories, all that’s
left is to apply this information to a minimal API.

In the following code, we inject two ILogger instances with different categories. This is not a
common practice, but we did it to make the example more concrete and show how the logger works:

app.MapGet("/first-log", (ILogger<CategoryFiltered>
loggerCategory, ILogger<MyCategoryAlert> loggerAlertCategory)
=>

https://docs.microsoft.com/aspnet/core/fundamentals/logging/#aspnet-core-and-ef-core-categories
https://docs.microsoft.com/aspnet/core/fundamentals/logging/#aspnet-core-and-ef-core-categories

Using Logging to Identify Errors98

{

    loggerCategory.LogInformation("I'm information

      {MyName}", "My Name Information");

    loggerAlertCategory.LogInformation("I'm information

      {MyName}", "Alert Information");

    return Results.Ok();

})

.WithName("GetFirstLog");

In the preceding snippet, we inject two instances of the logger with different categories; each category
tracks a single piece of information. The information is written according to a template that we will
describe shortly. The effect of this example is that based on the level, we can show or disable the
information displayed for a single category, without changing the code.

We started filtering the logo by levels and categories. Now, we want to show you how to define a
template that will allow us to define a message and make it dynamic in some of its parts.

Customizing log message

The message field that is asked by the log methods is a simple string object that we can enrich and
serialize through the logging frameworks in proper structures. The message is therefore essential to
identify malfunctions and errors, and inserting objects in it can significantly help us to identify the
problem:

string apples = "apples";

string pears = "pears";

string bananas = "bananas";

logger.LogInformation("My fruit box has: {pears}, {bananas},
{apples}", apples, pears, bananas);

The message template contains placeholders that interpolate content into the textual message.

In addition to the text, it is necessary to pass the arguments to replace the placeholders. Therefore, the
order of the parameters is valid but not the name of the placeholders for the substitution.

The result then considers the positional parameters and not the placeholder names:

My fruit box has: apples, pears, bananas

Now you know how to customize log messages. Next, let us learn about infrastructure logging, which
is essential while working in more complex scenarios.

Exploring logging in .NET 99

Infrastructure logging

In this section, we want to tell you about a little-known and little-used theme within ASP.NET
applications: the W3C log.

This log is a standard that is used by all web servers, not only Internet Information Services (IIS). It
also works on NGINX and many other web servers and can be used on Linux, too. It is also used to
trace various requests. However, the log cannot understand what happened inside the call.

Thus, this feature focuses on the infrastructure, that is, how many calls are made and to which endpoint.

In this section, we will see how to enable tracking, which, by default, is stored on a file. The functionality
takes a little time to find but enables more complex scenarios that must be managed with appropriate
practices and tools, such as OpenTelemetry.

OpenTelemetry
OpenTelemetry is a collection of tools, APIs, and SDKs. We use it to instrument, generate, collect,
and export telemetry data (metrics, logs, and traces) to help analyze software performance
and behavior. You can learn more at the OpenTelemetry official website: https://
opentelemetry.io/.

To configure W3C logging, you need to register the AddW3CLogging method and configure all
available options.

To enable logging, you only need to add UseW3CLogging.

The writing of the log does not change; the two methods enable the scenario just described and start
writing data to the W3C log standard:

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddW3CLogging(logging =>

{

    logging.LoggingFields = W3CLoggingFields.All;

});

var app = builder.Build();

app.UseW3CLogging();

app.MapGet("/first-w3c-log", (IWebHostEnvironment
webHostEnvironment) =>

{

    return Results.Ok(new { PathToWrite =

https://opentelemetry.io/
https://opentelemetry.io/

Using Logging to Identify Errors100

      webHostEnvironment.ContentRootPath });

})

.WithName("GetW3CLog");

We report the header of the file that is created (the headers of the information will be tracked later):

#Version: 1.0

#Start-Date: 2022-01-03 10:34:15

#Fields: date time c-ip cs-username s-computername s-ip s-port
cs-method cs-uri-stem cs-uri-query sc-status time-taken cs-
version cs-host cs(User-Agent) cs(Cookie) cs(Referer)

We’ve seen how to track information about the infrastructure hosting our application; now, we want
to increase log performance with new features in .NET 6 that help us set up standard log messages
and avoid errors.

Source generators

One of the novelties of .NET 6 is the source generators; they are performance optimization tools that
generate executable code at compile time. The creation of executable code at compile time, therefore,
generates an increase in performance. During the execution phase of the program, all structures are
comparable to code written by the programmer before compilation.

String interpolation using $”” is generally great, and it makes for much more readable code
than string.Format(), but you should almost never use it when writing log messages:

logger.LogInformation($"I'm {person.Name}-{person.Surname}")

The output of this method to the Console will be the same when using string interpolation or structural
logging, but there are several problems:

•	 You lose the structured logs and you won’t be able to filter by the format values or archive the
log message in the custom field of NoSQL products.

•	 Similarly, you no longer have a constant message template to find all identical logs.

•	 The serialization of the person is done ahead of time before the string is passed
into LogInformation.

•	 The serialization is done even though the log filter is not enabled. To avoid processing the log, it
is necessary to check whether the layer is active, which would make the code much less readable.

Exploring logging in .NET 101

Let us say you decide to update the log message to include Age to clarify why the log is being written:

logger.LogInformation("I'm {Name}-{Surname} with {Age}",
person.Name, person.Surname);

In the previous code snippet, I added Age in the message template but not in the method signature.
At compile time, there is no compile-time error, but when this line is executed, an exception is thrown
due to the lack of a third parameter.

LoggerMessage in .NET 6 comes to our rescue, automatically generating the code to log the
necessary data. The methods will require the correct number of parameters and the text will be
formatted in a standard way.

To use the LoggerMessage syntax, you can take advantage of a partial class or a static class. Inside
the class, it will be possible to define the method or methods with all the various log cases:

public partial class LogGenerator

    {

        private readonly ILogger<LogGeneratorCategory>

          _logger;

        public LogGenerator(ILogger<LogGeneratorCategory>

          logger)

        {

            _logger = logger;

        }

        [LoggerMessage(

            EventId = 100,

            EventName = "Start",

            Level = LogLevel.Debug,

            Message = "Start Endpoint: {endpointName} with

              data {dataIn}")]

        public partial void StartEndpointSignal(string

          endpointName, object dataIn);

        [LoggerMessage(

           EventId = 101,

           EventName = "StartFiltered",

           Message = "Log level filtered: {endpointName}

Using Logging to Identify Errors102

             with data {dataIn}")]

        public partial void LogLevelFilteredAtRuntime(

          LogLevel, string endpointName, object dataIn);

    }

    public class LogGeneratorCategory { }

In the previous example, we created a partial class, injected the logger and its category, and implemented
two methods. The methods are used in the following code:

app.MapPost("/start-log", (PostData data, LogGenerator
logGenerator) =>

{

    logGenerator.StartEndpointSignal("start-log", data);

    logGenerator.LogLevelFilteredAtRuntime(LogLevel.Trace,

      "start-log", data);

})

.WithName("StartLog");

internal record PostData(DateTime Date, string Name);

Notice how in the second method, we also have the possibility to define the log level at runtime.

Behind the scenes, the [LoggerMessage] source generator generates the LoggerMessage.
Define() code to optimize your method call. The following output shows the generated code:

[global::System.CodeDom.Compiler.
GeneratedCodeAttribute("Microsoft.Extensions.Logging.
Generators", "6.0.5.2210")]

        public partial void LogLevelFilteredAtRuntime(

          global::Microsoft.Extensions.Logging.LogLevel

          logLevel, global::System.String endpointName,

          global::System.Object dataIn)

        {

            if (_logger.IsEnabled(logLevel))

            {

                _logger.Log(

                    logLevel,

                    new global::Microsoft.Extensions.

                     Logging.EventId(101, "StartFiltered"),

Leveraging the logging framework 103

                    new __LogLevelFilteredAtRuntimeStruct(

                      endpointName, dataIn),

                    null,

                      __LogLevelFilteredAtRuntimeStruct.

                          Format);

            }

        }

In this section, you have learned about some logging providers, different log levels, how to configure
them, what parts of the message template to modify, enabling logging, and the benefits of source
generators. In the next section, we will focus more on logging providers.

Leveraging the logging framework
The logging framework, as mentioned at the beginning of the chapter, already has by design a series
of providers that do not require adding any additional packages. Now, let us explore how to work with
these providers and how to build custom ones. We will analyze only the Console log provider because
it has all the sufficient elements to replicate the same reasoning on other log providers.

Console log

The Console log provider is the most used one because, during the development, it gives us a lot of
information and collects all the application errors.

Since .NET 6, this provider has been joined by the AddJsonConsole provider, which, besides
tracing the errors like the console, serializes them in a JSON object readable by the human eye.

In the following example, we show how to configure the JsonConsole provider and also add
indentation when writing the JSON payload:

builder.Logging.AddJsonConsole(options =>

        options.JsonWriterOptions = new JsonWriterOptions()

        {

            Indented = true

        });

As we’ve seen in the previous examples, we’re going to track the information with the message template:

app.MapGet("/first-log", (ILogger<CategoryFiltered>
loggerCategory, ILogger<MyCategoryAlert> loggerAlertCategory)
=>

{

Using Logging to Identify Errors104

    loggerCategory.LogInformation("I'm information

      {MyName}", "My Name Information");

    loggerCategory.LogDebug("I'm debug {MyName}",

      "My Name Debug");

    loggerCategory.LogInformation("I'm debug {Data}",

      new PayloadData("CategoryRoot", "Debug"));

    loggerAlertCategory.LogInformation("I'm information

      {MyName}", "Alert Information");

    loggerAlertCategory.LogDebug("I'm debug {MyName}",

      "Alert Debug");

    var p = new PayloadData("AlertCategory", "Debug");

    loggerAlertCategory.LogDebug("I'm debug {Data}", p);

    return Results.Ok();

})

.WithName("GetFirstLog");

Finally, an important note: the Console and JsonConsole providers do not serialize objects
passed via the message template but only write the class name.

var p = new PayloadData("AlertCategory", "Debug");

loggerAlertCategory.LogDebug("I'm debug {Data}", p);

This is definitely a limitation of providers. Thus, we suggest using structured logging tools such as
NLog, log4net, and Serilog, which we will talk about shortly.

Leveraging the logging framework 105

We present the outputs of the previous lines with the two providers just described:

Figure 5.1 – AddJsonConsole output

Using Logging to Identify Errors106

Figure 5.1 shows the log formatted as JSON, with several additional details compared to the traditional
console log.

Figure 5.2 – Default logging provider Console output

Figure 5.2 shows the default logging provider Console output.

Given the default providers, we want to show you how you can create a custom one that fits the needs
of your application.

Creating a custom provider

The logging framework designed by Microsoft can be customized with little effort. Thus, let us learn
how to create a custom provider.

Why create a custom provider? Well, put simply, to not have dependencies with logging libraries and
to better manage the performance of the application. Finally, it also encapsulates some custom logic
of your specific scenario and makes your code more manageable and readable.

In the following example, we have simplified the usage scenario to show you the minimum components
needed to create a working logging provider for profit.

One of the fundamental parts of a provider is the ability to configure its behavior. Let us create a class
that can be customized at application startup or retrieve information from appsettings.

Leveraging the logging framework 107

In our example, we define a fixed EventId to verify a daily rolling file logic and a path of where to
write the file:

public class FileLoggerConfiguration

{

        public int EventId { get; set; }

        public string PathFolderName { get; set; } =

          "logs";

        public bool IsRollingFile { get; set; }

}

The custom provider we are writing will be responsible for writing the log information to a text file.
We achieve this by implementing the log class, which we call FileLogger, which implements the
ILogger interface.

In the class logic, all we do is implement the log method and check which file to put the information in.

We put the directory verification in the next file, but it’s more correct to put all the control logic in this
method. We also need to make sure that the log method does not throw exceptions at the application
level. The logger should never affect the stability of the application:

    public class FileLogger : ILogger

    {

        private readonly string name;

        private readonly Func<FileLoggerConfiguration>

          getCurrentConfig;

        public FileLogger(string name,

          Func<FileLoggerConfiguration> getCurrentConfig)

        {

            this.name = name;

            this.getCurrentConfig = getCurrentConfig;

        }

        public IDisposable BeginScope<TState>(TState state)

          => default!;

        public bool IsEnabled(LogLevel logLevel) => true;

Using Logging to Identify Errors108

        public void Log<TState>(LogLevel logLevel, EventId

          , TState state, Exception? exception,

          Func<TState, Exception?, string> formatter)

        {

            if (!IsEnabled(logLevel))

            {

                return;

            }

            var config = getCurrentConfig();

            if (config.EventId == 0 || config.EventId ==

                eventId.Id)

            {

                string line = $"{name} - {formatter(state,

                  exception)}";

                string fileName = config.IsRollingFile ?

                  RollingFileName : FullFileName;

                string fullPath = Path.Combine(

                  config.PathFolderName, fileName);

                File.AppendAllLines(fullPath, new[] { line });

            }

        }

        private static string RollingFileName =>

          $"log-{DateTime.UtcNow:yyyy-MM-dd}.txt";

        private const string FullFileName = "logs.txt";

    }

Now, we need to implement the ILoggerProvider interface, which is intended to create one or
more instances of the logger class just discussed.

In this class, we check the directory we mentioned in the previous paragraph, but we also check whether
the settings in the appsettings file change, via IOptionsMonitor<T>:

public class FileLoggerProvider : ILoggerProvider

{

    private readonly IDisposable onChangeToken;

    private FileLoggerConfiguration currentConfig;

Leveraging the logging framework 109

    private readonly ConcurrentDictionary<string,

      FileLogger> _loggers = new();

    public FileLoggerProvider(

      IOptionsMonitor<FileLoggerConfiguration> config)

    {

        currentConfig = config.CurrentValue;

        CheckDirectory();

        onChangeToken = config.OnChange(updateConfig =>

        {

            currentConfig = updateConfig;

            CheckDirectory();

        });

    }

    public ILogger CreateLogger(string categoryName)

    {

        return _loggers.GetOrAdd(categoryName, name => new

          FileLogger(name, () => currentConfig));

    }

    public void Dispose()

    {

        _loggers.Clear();

        onChangeToken.Dispose();

    }

    private void CheckDirectory()

    {

        if (!Directory.Exists(currentConfig.PathFolderName))

            Directory.CreateDirectory(currentConfig.

            PathFolderName);

    }

}

Finally, to simplify its use and configuration during the application startup phase, we also define an
extension method for registering the various classes just mentioned.

Using Logging to Identify Errors110

The AddFile method will register ILoggerProvider and couple it to its configuration (very
simple as an example, but it encapsulates several aspects of configuring and using a custom provider):

public static class FileLoggerExtensions

    {

        public static ILoggingBuilder AddFile(

        this ILoggingBuilder builder)

        {

            builder.AddConfiguration();

           builder.Services.TryAddEnumerable(

             ServiceDescriptor.Singleton<ILoggerProvider,

             FileLoggerProvider>());

            LoggerProviderOptions.RegisterProviderOptions<

              FileLoggerConfiguration, FileLoggerProvider>

              (builder.Services);

            return builder;

        }

        public static ILoggingBuilder AddFile(

            this ILoggingBuilder builder,

            Action<FileLoggerConfiguration> configure)

        {

            builder.AddFile();

            builder.Services.Configure(configure);

            return builder;

        }

    }

We record everything seen in the Program.cs file with the AddFile extension as shown:

builder.Logging.AddFile(configuration =>

{

    configuration.PathFolderName = Path.Combine(

      builder.Environment.ContentRootPath, "logs");

    configuration.IsRollingFile = true;

});

Leveraging the logging framework 111

The output is shown in Figure 5.3, where we can see both Microsoft log categories in the first five lines
(this is the classic application startup information):

Figure 5.3 – File log provider output

Then, the handler of the minimal APIs that we reported in the previous sections is called. As you can
see, no exception data or data passed to the logger is serialized.

To add this functionality as well, it is necessary to rewrite ILogger formatter and support
serialization of the object. This will give you everything you need to have in a useful logging framework
for production scenarios.

We’ve seen how to configure the log and how to customize the provider object to create a structured
log to send to a service or storage.

In the next section, we want to describe the Azure Application Insights service, which is very useful
for both logging and application monitoring.

Application Insights

In addition to the already seen providers, one of the most used ones is Azure Application Insights.
This provider allows you to send every single log event in the Azure service. In order to insert the
provider into our project, all we would have to do is install the following NuGet package:

<PackageReference Include="Microsoft.ApplicationInsights.
AspNetCore" Version="2.20.0" />

Registering the provider is very easy.

We first register the Application Insights framework, AddApplicationInsightsTelemetry,
and then register its extension on the AddApplicationInsights logging framework.

Using Logging to Identify Errors112

In the NuGet package previously described, the one for logging the component to the logging framework
is also present as a reference:

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddApplicationInsightsTelemetry();

builder.Logging.AddApplicationInsights();

To register the instrumentation key, which is the key that is issued after registering the service on
Azure, you will need to pass this information to the registration method. We can avoid hardcoding
this information by placing it in the appsettings.json file using the following format:

"ApplicationInsights": {

    "InstrumentationKey": "your-key"

  },

This process is also described in the documentation (https://docs.microsoft.com/it-it/
azure/azure-monitor/app/asp-net-core#enable-application-insights-
server-side-telemetry-no-visual-studio).

By launching the method already discussed in the previous sections, we have all the information
hooked into Application Insights.

Application Insights groups the logs under a particular trace. A trace is a call to an API, so everything
that happens in that call is logically grouped together. This feature takes advantage of the WebServer
information and, in particular, TraceParentId issued by the W3C standard for each call.

In this way, Application Insights can bind calls between various minimal APIs, should we be in a
microservice application or with multiple services collaborating with each other.

https://docs.microsoft.com/it-it/azure/azure-monitor/app/asp-net-core#enable-application-insights-server-side-telemetry-no-visual-studio
https://docs.microsoft.com/it-it/azure/azure-monitor/app/asp-net-core#enable-application-insights-server-side-telemetry-no-visual-studio
https://docs.microsoft.com/it-it/azure/azure-monitor/app/asp-net-core#enable-application-insights-server-side-telemetry-no-visual-studio

Storing a structured log with Serilog 113

Figure 5.4 – Application Insights with a standard log provider

We notice how the default formatter of the logging framework does not serialize the PayloadData
object but only writes the text of the object.

In the applications that we will bring into production, it will be necessary to also trace the serialization
of the objects. Understanding the state of the object on time is fundamental to analyzing the errors
that occurred during a particular call while running queries in the database or reading the data read
from the same.

Storing a structured log with Serilog
As we just discussed, tracking structured objects in the log helps us tremendously in understanding
errors.

We, therefore, suggest one of the many logging frameworks: Serilog.

Serilog is a comprehensive library that has many sinks already written that allow you to store log
data and search it later.

Serilog is a logging library that allows you to track information on multiple data sources. In Serilog,
these sources are called sinks, and they allow you to write structured data inside the log applying a
serialization of the data passed to the logging system.

Using Logging to Identify Errors114

Let’s see how to get started using Serilog for a minimal API application. Let’s install these NuGet
packages. Our goal will be to track the same information we’ve been using so far, specifically Console
and ApplicationInsights:

<PackageReference Include="Microsoft.ApplicationInsights.
AspNetCore" Version="2.20.0" />

<PackageReference Include="Serilog.AspNetCore" Version="4.1.0"
/>

<PackageReference Include="Serilog.Settings.Configuration"
Version="3.3.0" />

<PackageReference Include="Serilog.Sinks.ApplicationInsights"
Version="3.1.0" />

The first package is the one needed for the ApplicationInsights SDK in the application.
The second package allows us to register Serilog in the ASP.NET pipeline and to be able to exploit
Serilog. The third package allows us to configure the framework in the appsettings file and not
have to rewrite the application to change a parameter or code. Finally, we have the package to add
the ApplicationInsights sink.

In the appsettings file, we create a new Serilog section, in which we should register the
various sinks in the Using section. We register the log level, the sinks, the enrichers that enrich the
information for each event, and the properties, such as the application name:

"Serilog": {

    "Using": ["Serilog.Sinks.Console",

      "Serilog.Sinks.ApplicationInsights"],

    "MinimumLevel": "Verbose",

    "WriteTo": [

      { "Name": "Console" },

      {

        "Name": "ApplicationInsights",

        "Args": {

          "restrictedToMinimumLevel": "Information",

          "telemetryConverter": "Serilog.Sinks.

           ApplicationInsights.Sinks.ApplicationInsights.

           TelemetryConverters.TraceTelemetryConverter,

           Serilog.Sinks.ApplicationInsights"

        }

      }

    ],

Storing a structured log with Serilog 115

    "Enrich": ["FromLogContext"],   

    "Properties": {

      "Application": "MinimalApi.Packt"

    }

  }

Now, we just have to register Serilog in the ASP.NET pipeline:

using Microsoft.ApplicationInsights.Extensibility;

using Serilog;

var builder = WebApplication.CreateBuilder(args);

builder.Logging.AddSerilog();

builder.Services.AddApplicationInsightsTelemetry();

var app = builder.Build();

Log.Logger = new LoggerConfiguration()

.WriteTo.ApplicationInsights(app.Services.
GetRequiredService<TelemetryConfiguration>(),
TelemetryConverter.Traces)

.CreateLogger();

With the builder.Logging.AddSerilog() statement, we register Serilog with the logging
framework to which all logged events will be passed with the usual ILogger interface. Since the framework
needs to register the TelemetryConfiguration class to register ApplicationInsights, we
are forced to hook the configuration to the static Logger object of Serilog. This is all because Serilog
will turn the information from the Microsoft logging framework over to the Serilog framework and
add all the necessary information.

The usage is very similar to the previous one, but this time, we add an @ (at) to the message template
that will tell Serilog to serialize the sent object.

With this very simple {@Person} wording, we will be able to achieve the goal of serializing the
object and sending it to the ApplicationInsights service:

app.MapGet("/serilog", (ILogger<CategoryFiltered>
loggerCategory) =>

{

    loggerCategory.LogInformation("I'm {@Person}", new

      Person("Andrea", "Tosato", new DateTime(1986, 11,

      9)));

    return Results.Ok();

Using Logging to Identify Errors116

})

.WithName("GetFirstLog");

internal record Person(string Name, string Surname, DateTime
Birthdate);

Finally, we have to find the complete data, serialized with the JSON format, in the Application Insights
service.

Figure 5.5 – Application Insights with structured data

Summary 117

Summary
In this chapter, we have seen several logging aspects of the implementation of minimal APIs.

We started to appreciate the ASP.NET churned logging framework, and we understood how to
configure and customize it. We focused on how to define a message template and how to avoid errors
with the source generator.

We saw how to use the new provider to serialize logs with the JSON format and create a custom provider.
These elements turned out to be very important for mastering the logging tool and customizing it to
your liking.

Not only was the application log mentioned but also the infrastructure log, which together with
Application Insights becomes a key element to monitoring your application. Finally, we understood
that there are ready-made tools, such as Serilog, that help us to have ready-to-use functionalities with
a few steps thanks to some packages installed by NuGet.

In the next chapter, we will present the mechanisms for validating an input object to the API. This is
a fundamental feature to return a correct error to the calls and discard inaccurate requests or those
promoted by illicit activities such as spam and attacks, aimed at generating load on our servers.

6
Exploring Validation

and Mapping

In this chapter of the book, we will discuss how to perform data validation and mapping with minimal
APIs, showing what features we currently have, what is missing, and what the most interesting alternatives
are. Learning about these concepts will help us to develop more robust and maintainable applications.

In this chapter, we will be covering the following topics:

•	 Handling validation

•	 Mapping data to and from APIs

Technical requirements
To follow the descriptions in this chapter, you will need to create an ASP.NET Core 6.0 Web API
application. Refer to the Technical requirements section in Chapter 2, Exploring Minimal APIs and
Their Advantages, for instructions on how to do so.

If you’re using your console, shell, or bash terminal to create the API, remember to change your
working directory to the current chapter number (Chapter06).

All the code samples in this chapter can be found in the GitHub repository for this book at https://
github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/
Chapter06.

Handling validation
Data validation is one of the most important processes in any working software. In the context of a
Web API, we perform the validation process to ensure that the information passed to our endpoints
respects certain rules – for example, that a Person object has both the FirstName and LastName
properties defined, an email address is valid, or an appointment date isn’t in the past.

https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter06
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter06
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter06

Exploring Validation and Mapping120

In controller-based projects, we can perform these checks, also termed model validation, directly
on the model, using data annotations. In fact, the ApiController attribute that is placed on a
controller makes model validation errors automatically trigger a 400 Bad Request response if
one or more validation rules fail. Therefore, in controller-based projects, we typically don’t need to
perform explicit model validation at all: if the validation fails, our endpoint will never be invoked.

Note
The ApiController attribute enables the automatic model validation behavior using the
ModelStateInvalidFilter action filter.

Unfortunately, minimal APIs do not provide built-in support for validation. The IModelValidator
interface and all related objects cannot be used. Thus, we don’t have a ModelState; we can’t prevent
the execution of our endpoint if there is a validation error and must explicitly return a 400 Bad
Request response.

So, for example, let’s see the following code:

app.MapPost("/people", (Person person) =>

{

    return Results.NoContent();

});

public class Person

{

    [Required]

    [MaxLength(30)]

    public string FirstName { get; set; }

    [Required]

    [MaxLength(30)]

    public string LastName { get; set; }

    [EmailAddress]

    [StringLength(100, MinimumLength = 6)]

    public string Email { get; set; }

}

Handling validation 121

As we can see, the endpoint will be invoked even if the Person argument does not respect the
validation rules. There is only one exception: if we use nullable reference types and we don’t pass a
body in the request, we effectively get a 400 Bad Request response. As mentioned in Chapter
2, Exploring Minimal APIs and Their Advantages, nullable reference types are enabled by default in
.NET 6.0 projects.

If we want to accept a null body (if ever there was a need), we need to declare the parameter as
Person?. But, as long as there is a body, the endpoint will always be invoked.

So, with minimal APIs, it is necessary to perform validation inside each route handler and return the
appropriate response if some rules fail. We can either implement a validation library compatible with
the existing attributes so that we can perform validation using the classic data annotations approach,
as described in the next section, or use a third-party solution such as FluentValidation, as we
will see in the Integrating FluentValidation section.

Performing validation with data annotations

If we want to use the common validation pattern based on data annotations, we need to rely on
reflection to retrieve all the validation attributes in a model and invoke their IsValid methods,
which are provided by the ValidationAttribute base class.

This behavior is a simplification of what ASP.NET Core actually does to handle validations. However,
this is the way validation in controller-based projects works.

While we can also manually implement a solution of this kind with minimal APIs, if we decide to use
data annotations for validation, we can leverage a small but interesting library, MiniValidation,
which is available on GitHub (https://github.com/DamianEdwards/MiniValidation)
and NuGet (https://www.nuget.org/packages/MiniValidation).

Important note
At the time of writing, MiniValidation is available on NuGet as a prerelease.

We can add this library to our project in one of the following ways:

•	 Option 1: If you’re using Visual Studio 2022, right-click on the project and choose the
Manage NuGet Packages command to open the Package Manager GUI; then, search for
MiniValidation. Be sure to check the Include prerelease option and click Install.

•	 Option 2: Open the Package Manager Console if you’re inside Visual Studio 2022, or
open your console, shell, or bash terminal, go to your project directory, and execute the
following command:

dotnet add package MiniValidation --prerelease

https://github.com/DamianEdwards/MiniValidation
https://www.nuget.org/packages/MiniValidation

Exploring Validation and Mapping122

Now, we can validate a Person object using the following code:

app.MapPost("/people", (Person person) =>

{

    var isValid = MiniValidator.TryValidate(person,

      out var errors);

    if (!isValid)

    {

        return Results.ValidationProblem(errors);

    }

    return Results.NoContent();

});

As we can see, the MiniValidator.TryValidate static method provided by MiniValidation
takes an object as input and automatically verifies all the validation rules that are defined on its properties.
If the validation fails, it returns false and populates the out parameter with all the validation errors
that have occurred. In this case, because it is our responsibility to return the appropriate response
code, we use Results.ValidationProblem, which produces a 400 Bad Request response
with a ProblemDetails object (as described in Chapter 3, Working with Minimal APIs) and also
contains the validation issues.

Now, as an example, we can invoke the endpoint using the following invalid input:

{

  "lastName": "MyLastName",

  "email": "email"

}

This is the response we will obtain:

{

  "type":

    "https://tools.ietf.org/html/rfc7231#section-6.5.1",

  "title": "One or more validation errors occurred.",

  "status": 400,

  "errors": {

    "FirstName": [

      "The FirstName field is required."

    ],

Handling validation 123

    "Email": [

      "The Email field is not a valid e-mail address.",

      "The field Email must be a string with a minimum

       length of 6 and a maximum length of 100."

    ]

  }

}

In this way, besides the fact that we need to execute validation manually, we can implement the approach
of using data annotations on our models in the same way we were accustomed to in previous versions
of ASP.NET Core. We can also customize error messages and define custom rules by creating classes
that inherit from ValidationAttribute.

Note
The full list of validation attributes available in ASP.NET Core 6.0 is published at https://docs.
microsoft.com/dotnet/api/system.componentmodel.dataannotations. If
you’re interested in creating custom attributes, you can refer to https://docs.microsoft.
com/aspnet/core/mvc/models/validation#custom-attributes.

Although data annotations are the most used solution, we can also handle validations using a so-called
fluent approach, which has the benefit of completely decoupling validation rules from the model, as
we’ll see in the next section.

Integrating FluentValidation

In every application, it is important to correctly organize our code. This is also true for validation.
While data annotations are a working solution, we should think about alternatives that can help
us write more maintainable projects. This is the purpose of FluentValidation – a library,
part of the .NET Foundation, that allows us to build validation rules using a fluent interface
with lambda expressions. The library is available on GitHub (https://github.com/
FluentValidation/FluentValidation) and NuGet (https://www.nuget.org/
packages/FluentValidation). This library can be used in any kind of project, but when
working with ASP.NET Core, there is an ad-hoc NuGet package (https://www.nuget.org/
packages/FluentValidation.AspNetCore) that contains useful methods that help to
integrate it.

Note
.NET Foundation is an independent organization that aims to support open source software
development and collaboration around the .NET platform. You can learn more at https://
dotnetfoundation.org.

https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations
https://docs.microsoft.com/dotnet/api/system.componentmodel.dataannotations
https://docs.microsoft.com/aspnet/core/mvc/models/validation#custom-attributes
https://docs.microsoft.com/aspnet/core/mvc/models/validation#custom-attributes
https://github.com/FluentValidation/FluentValidation
https://github.com/FluentValidation/FluentValidation
https://www.nuget.org/packages/FluentValidation
https://www.nuget.org/packages/FluentValidation
https://www.nuget.org/packages/FluentValidation.AspNetCore
https://www.nuget.org/packages/FluentValidation.AspNetCore
https://dotnetfoundation.org
https://dotnetfoundation.org

Exploring Validation and Mapping124

As stated before, with this library, we can decouple validation rules from the model to create a more
structured application. Moreover, FluentValidation allows us to define even more complex rules
with a fluent syntax without the need to create custom classes based on ValidationAttribute.
The library also natively supports the localization of standard error messages.

So, let’s see how we can integrate FluentValidation into a minimal API project. First, we need
to add this library to our project in one of the following ways:

•	 Option 1: If you’re using Visual Studio 2022, right-click on the project and choose the
Manage NuGet Packages command to open Package Manager GUI. Then, search for
FluentValidation.DependencyInjectionExtensions and click Install.

•	 Option 2: Open Package Manager Console if you’re inside Visual Studio 2022, or open your
console, shell, or bash terminal, go to your project directory, and execute the following command:

dotnet add package FluentValidation.
DependencyInjectionExtensions

Now, we can rewrite the validation rules for the Person object and put them in a PersonValidator
class:

public class PersonValidator : AbstractValidator<Person>

{

    public PersonValidator()

    {

        RuleFor(p =>

          p.FirstName).NotEmpty().MaximumLength(30);

        RuleFor(p =>

          p.LastName).NotEmpty().MaximumLength(30);

        RuleFor(p => p.Email).EmailAddress().Length(6,

          100);

    }

}

PersonValidator inherits from AbstractValidator<T>, a base class provided by
FluentValidation that contains all the methods we need to define the validation rules. For
example, we fluently say that we have a rule for the FirstName property, which is that it must not
be empty and it can have a maximum length of 30 characters.

Handling validation 125

The next step is to register the validator in the service provider so that we can use it in our route
handlers. We can perform this task with a simple instruction:

var builder = WebApplication.CreateBuilder(args);

//...

builder.Services.
AddValidatorsFromAssemblyContaining<Program>();

The AddValidatorsFromAssemblyContaining method automatically registers all the validators
derived from AbstractValidator within the assembly containing the specified type. In particular,
this method registers the validators and makes them accessible through dependency injection via the
IValidator<T> interface, which in turn, is implemented by the AbstractValidator<T>
class. If we have multiple validators, we can register them all with this single instruction. We can also
easily put our validators in external assemblies.

Now that everything is in place, remembering that with minimal APIs we don’t have automatic model
validation, we must update our route handler in this way:

app.MapPost("/people", async (Person person, IValidator<Person>
validator) =>

{

    var validationResult =

      await validator.ValidateAsync(person);

    if (!validationResult.IsValid)

    {

        var errors = validationResult.ToDictionary();

        return Results.ValidationProblem(errors);

    }

    return Results.NoContent();

});

We have added an IValidator<Person> argument in the route handler parameter list, so now
we can invoke its ValidateAsync method to apply the validation rules against the input Person
object. If the validation fails, we extract all the error messages and return them to the client with the
usual Results.ValidationProblem method, as described in the previous section.

Exploring Validation and Mapping126

In conclusion, let’s see what happens if we try to invoke the endpoint using the following input as before:

{

  "lastName": "MyLastName",

  "email": "email"

}

We’ll get the following response:

{

  "type":

    "https://tools.ietf.org/html/rfc7231#section-6.5.1",

  "title": "One or more validation errors occurred.",

  "status": 400,

  "errors": {

    "FirstName": [

      "'First Name' non può essere vuoto."

    ],

    "Email": [

      "'Email' non è un indirizzo email valido.",

      "'Email' deve essere lungo tra i 6 e 100 caratteri.

        Hai inserito 5 caratteri."

    ]

  }

}

As mentioned earlier, FluentValidation provides translations for standard error messages,
so this is the response you get when running on an Italian system. Of course, we can completely
customize the messages with the typical fluent approach, using the WithMessage method chained
to the validation methods defined in the validator. For example, see the following:

RuleFor(p => p.FirstName).NotEmpty().WithMessage("You must
provide the first name");

We’ll talk about localization in further detail in Chapter 9, Leveraging Globalization and Localization.

This is just a quick example of how to define validation rules with FluentValidation and use
them with minimal APIs. This library allows many more complex scenarios that are comprehensively
described in the official documentation available at https://fluentvalidation.net.

Now that we have seen how to add validation to our route handlers, it is important to understand how
we can update the documentation created by Swagger with this information.

https://fluentvalidation.net

Handling validation 127

Adding validation information to Swagger

Regardless of the solution that has been chosen to handle validation, it is important to update the
OpenAPI definition with the indication that a handler can produce a validation problem response,
calling the ProducesValidationProblem method after the endpoint declaration:

app.MapPost("/people", (Person person) =>

{

    //...

})

.Produces(StatusCodes.Status204NoContent)

.ProducesValidationProblem();

In this way, a new response type for the 400 Bad Request status code will be added to Swagger,
as we can see in Figure 6.1:

Figure 6.1 – The validation problem response added to Swagger

Exploring Validation and Mapping128

Moreover, the JSON schemas that are shown at the bottom of the Swagger UI can show the rules of
the corresponding models. One of the benefits of defining validation rules using data annotations is
that they are automatically reflected in these schemas:

Figure 6.2 – The validation rules for the Person object in Swagger

Unfortunately, validation rules defined with FluentValidation aren’t automatically shown
in the JSON schema of Swagger. We can overcome this limitation by using MicroElements.
Swashbuckle.FluentValidation, a small library that, as usual, is available on GitHub
(https://github.com/micro-elements/MicroElements.Swashbuckle.
FluentValidation) and NuGet (https://www.nuget.org/packages/MicroElements.
Swashbuckle.FluentValidation). After adding it to our project, following the same
steps described before for the other NuGet packages we have introduced, we just need to call the
AddFluentValidationRulesToSwagger extension method:

var builder = WebApplication.CreateBuilder(args);

//...

builder.Services.AddFluentValidationRulesToSwagger();

https://github.com/micro-elements/MicroElements.Swashbuckle.FluentValidation
https://github.com/micro-elements/MicroElements.Swashbuckle.FluentValidation
https://www.nuget.org/packages/MicroElements.Swashbuckle.FluentValidation
https://www.nuget.org/packages/MicroElements.Swashbuckle.FluentValidation

Mapping data to and from APIs 129

In this way, the JSON schema shown in Swagger will reflect the validation rules, as with the data
annotations. However, it’s worth remembering that, at the time of writing, this library does not
support all the validators available in FluentValidation. For more information, we can refer to
the GitHub page of the library.

This ends our overview of validation in minimal APIs. In the next section, we’ll analyze another
important theme of every API: how to correctly handle the mapping of data to and from our services.

Mapping data to and from APIs
When dealing with APIs that can be called by any system, there is one golden rule: we should never
expose our internal objects to the callers. If we don’t follow this decoupling idea and, for some reason,
need to change our internal data structures, we could end up breaking all the clients that interact with
us. Both the internal data structures and the objects that are used to dialog with the clients must be
able to evolve independently from one another.

This requirement for dialog is the reason why mapping is so important. We need to transform input
objects of one type into output objects of a different type and vice versa. In this way, we can achieve
two objectives:

•	 Evolve our internal data structures without introducing breaking changes with the contracts
that are exposed to the callers

•	 Modify the format of the objects used to communicate with the clients without the need to
change the way these objects are handled internally

In other words, mapping means transforming one object into another, literally, by copying and
converting an object’s properties from a source to a destination. However, mapping code is boring,
and testing mapping code is even more boring. Nevertheless, we need to fully understand that the
process is crucial and strive to adopt it in all scenarios.

So, let’s consider the following object, which could represent a person saved in a database using Entity
Framework Core:

public class PersonEntity

{

    public int Id { get; set; }

    public string FirstName { get; set; }

    public string LastName { get; set; }

Exploring Validation and Mapping130

    public DateTime BirthDate { get; set; }

    public string City { get; set; }

}

We have set endpoints for getting a list of people or retrieving a specific person.

The first thought could be to directly return PersonEntity to the caller. The following code is
highly simplified, enough for us to understand the scenario:

app.MapGet("/people/{id:int}", (int id) =>

{

    // In a real application, this entity could be

    // retrieved from a database, checking if the person

    // with the given ID exists.

    var person = new PersonEntity();

    return Results.Ok(person);

})

.Produces(StatusCodes.Status200OK, typeof(PersonEntity));

What happens if we need to modify the schema of the database, adding, for example, the creation
date of the entity? In this case, we need to change PersonEntity with a new property that maps
the relevant date. However, the callers also get this information now, which we probably don’t want
to be exposed. Instead, if we use a so-called data transformation object (DTO) to expose the person,
this problem will be redundant:

public class PersonDto

{

    public int Id { get; set; }

    public string FirstName { get; set; }

    public string LastName { get; set; }

    public DateTime BirthDate { get; set; }

    public string City { get; set; }

}

Mapping data to and from APIs 131

This means that our API should return an object of the PersonDto type instead of PersonEntity,
performing a conversion between the two objects. At first sight, the exercise appears to be a useless
duplication of code, as the two classes contain the same properties. However, if we consider the fact
that PersonEntity could evolve with new properties that are necessary for the database, or change
structure with a new semantic that the caller shouldn’t know, the importance of mapping becomes
clear. An example is storing the city in a separate table and exposing it through an Address property.
Or suppose that, for security reasons, we don’t want to expose the exact birth date anymore, only the
age of the person. Using an ad-hoc DTO, we can easily change the schema and update the mapping
without touching our entity, having a better separation of concerns.

Of course, mapping can be bidirectional. In our example, we need to convert PersonEntity to
PersonDto before returning it to the client. However, we could also do the opposite – that is, convert
the PersonDto type that comes from a client into PersonEntity to save it to a database. All the
solutions we’re talking about are valid for both scenarios.

We can either perform mapping manually or adopt a third-party library that provides us with this
feature. In the following sections, we’ll analyze both approaches, understanding the pros and cons of
the available solutions.

Performing manual mapping

In the previous section, we said that mapping essentially means copying the properties of a source
object into the properties of a destination and applying some sort of conversion. The easiest and most
effective way to perform this task is to do it manually.

With this approach, we need to take care of all the mapping code by ourselves. From this point of view,
there is nothing much more to say; we need a method that takes an object as input and transforms
it into another as output, remembering to apply mapping recursively if a class contains a complex
property that must be mapped in turn. The only suggestion is to use an extension method so that we
can easily call it everywhere we need.

A full example of this mapping process is available in the GitHub repository: https://github.com/
PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter06.

This solution guarantees the best performance because we explicitly write all mapping instructions
without relying on an automatic system (such as reflection). However, the manual method has a
drawback: every time we add a property in the entity that must be mapped to a DTO, we need to
change the mapping code. On the other hand, some approaches can simplify mapping, but at the cost
of performance overhead. In the next section, we look at one such approach using AutoMapper.

https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter06
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter06

Exploring Validation and Mapping132

Mapping with AutoMapper

AutoMapper is probably one the most famous mapping framework for .NET. It uses a fluent
configuration API that works with a convention-based matching algorithm to match source values to
destination values. As with FluentValidation, the framework is part of the .NET Foundation
and is available either on GitHub (https://github.com/AutoMapper/AutoMapper) or
NuGet (https://www.nuget.org/packages/AutoMapper). Again, in this case, we have a
specific NuGet package, https://www.nuget.org/packages/AutoMapper.Extensions.
Microsoft.DependencyInjection, that simplifies its integration into ASP.NET Core projects.

Let’s take a quick look at how to integrate AutoMapper in a minimal API project, showing its main
features. The full documentation of the library is available at https://docs.automapper.org.

As usual, the first thing to do is to add the library to our project, following the same instructions we
used in the previous sections. Then, we need to configure AutoMapper, telling it how to perform
mapping. There are several ways to perform this task, but the recommended approach is to create classes
that are inherited from the Profile base class provided by the library and put the configuration
into the constructor:

public class PersonProfile : Profile

{

    public PersonProfile()

    {

        CreateMap<PersonEntity, PersonDto>();

    }

}

That’s all we need to start: a single instruction to indicate that we want to map PersonEntity to
PersonDto, without any other details. We have said that AutoMapper is convention-based. This
means that, by default, it maps properties with the same name from the source to the destination,
while also performing automatic conversions into compatible types, if necessary. For example, an
int property on the source can be automatically mapped to a double property with the same
name on the destination. In other words, if source and destination objects have the same property,
there is no need for any explicit mapping instruction. However, in our case, we need to perform some
transformations, so we can add them fluently after CreateMap:

public class PersonProfile : Profile

{

    public PersonProfile()

    {

        CreateMap<PersonEntity, PersonDto>()

            .ForMember(dst => dst.Age, opt =>

https://github.com/AutoMapper/AutoMapper
https://www.nuget.org/packages/AutoMapper
https://www.nuget.org/packages/AutoMapper.Extensions.Microsoft.DependencyInjection
https://www.nuget.org/packages/AutoMapper.Extensions.Microsoft.DependencyInjection
https://docs.automapper.org

Mapping data to and from APIs 133

           opt.MapFrom(src => CalculateAge(src.BirthDate)))

            .ForMember(dst => dst.City, opt =>

              opt.MapFrom(src => src.Address.City));

    }

    private static int CalculateAge(DateTime dateOfBirth)

    {

        var today = DateTime.Today;

        var age = today.Year - dateOfBirth.Year;

        if (today.DayOfYear < dateOfBirth.DayOfYear)

        {

            age--;

        }

        return age;

    }

}

With the ForMember method, we can specify how to map destination properties, dst.Age and
dst.City, using conversion expressions. We still don’t need to explicitly map the Id, FirstName,
or LastName properties because they exist with these names at both the source and destination.

Now that we have defined the mapping profile, we need to register it at startup so that ASP.NET Core can
use it. As with FluentValidation, we can invoke an extension method on IServiceCollection:

builder.Services.AddAutoMapper(typeof(Program).Assembly);

With this line of code, we automatically register all the profiles that are contained in the specified
assembly. If we add more profiles to our project, such as a separate Profile class for every entity
to map, we don’t need to change the registration instructions.

In this way, we can now use the IMapper interface through dependency injection:

app.MapGet("/people/{id:int}", (int id, IMapper mapper) =>

{

    var personEntity = new PersonEntity();

    //...

    var personDto = mapper.Map<PersonDto>(personEntity);

    return Results.Ok(personDto);

Exploring Validation and Mapping134

})

.Produces(StatusCodes.Status200OK, typeof(PersonDto));

After retrieving PersonEntity, for example, from a database using Entity Framework Core,
we call the Map method on the IMapper interface, specifying the type of the resulting object and
the input class. With this line of code, AutoMapper will use the corresponding profile to convert
PersonEntity into a PersonDto instance.

With this solution in place, mapping is now much easier to maintain because, as long as we add
properties with the same name on the source and destination, we don’t need to change the profile at
all. Moreover, AutoMapper supports list mapping and recursive mapping too. So, if we have an entity
that must be mapped, such as a property of the AddressEntity type on the PersonEntity
class, and the corresponding profile is available, the conversion is again performed automatically.

The drawback of this approach is a performance overhead. AutoMapper works by dynamically
executing mapping code at runtime, so it uses reflection under the hood. Profiles are created the first
time they are used and then they are cached to speed up subsequent mappings. However, profiles are
always applied dynamically, so there is a cost for the operation that is dependent on the complexity
of the mapping code itself. We have only seen a basic example of AutoMapper. The library is very
powerful and can manage quite complex mappings. However, we need to be careful not to abuse it –
otherwise, we can negatively impact the performance of our application.

Summary
Validation and mapping are two important features that we need to take into account when developing
APIs to build more robust and maintainable applications. Minimal APIs do not provide any built-in
way to perform these tasks, so it is important to know how we can add support for this kind of feature.
We have seen that we can perform validations with data annotations or using FluentValidation
and how to add validation information to Swagger. We have also talked about the significance of data
mapping and shown how to either leverage manual mapping or the AutoMapper library, describing
the pros and cons of each approach.

In the next chapter, we will talk about how to integrate minimal APIs with a data access layer, showing,
for example, how to access a database using Entity Framework Core.

7
Integration with the Data

Access Layer

In this chapter, we will learn about some basic ways to add a data access layer to the minimal APIs in
.NET 6.0. We will see how we can use some topics covered previously in the book to access data with
Entity Framework (EF) and then with Dapper. These are two ways to access a database.

In this chapter, we will be covering the following topics:

•	 Using Entity Framework

•	 Using Dapper

By the end of this chapter, you will be able to use EF from scratch in a minimal API project, and use
Dapper for the same goal. You will also be able to tell when one approach is better than the other in
a project.

Technical requirements
To follow along with this chapter, you will need to create an ASP.NET Core 6.0 Web API application.
You can use either of the following options:

•	 Click on the New Project option in the File menu of Visual Studio 2022, then choose the
ASP.NET Core Web API template, select a name and the working directory in the wizard, and
be sure to uncheck the Use controllers option in the next step.

•	 Open your console, shell, or Bash terminal, and change to your working directory. Use the
following command to create a new Web API application:

dotnet new webapi -minimal -o Chapter07

Integration with the Data Access Layer136

Now, open the project in Visual Studio by double-clicking on the project file or, in Visual Studio
Code, type the following command in the already open console:

cd Chapter07

code.

Finally, you can safely remove all the code related to the WeatherForecast sample, as we don’t
need it for this chapter.

All the code samples in this chapter can be found in the GitHub repository for this book at https://
github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/
Chapter07.

Using Entity Framework
We can absolutely say that if we are building an API, it is very likely that we will interact with data.

In addition, this data most probably needs to be persisted after the application restarts or after other
events, such as a new deployment of the application. There are many options for persisting data in
.NET applications, but EF is the most user-friendly and common solution for a lot of scenarios.

Entity Framework Core (EF Core) is an extensible, open source, and cross-platform data access
library for .NET applications. It enables developers to work with the database by using .NET objects
directly and removes, in most cases, the need to know how to write the data access code directly in
the database.

On top of this, EF Core supports a lot of databases, including SQLite, MySQL, Oracle, Microsoft SQL
Server, and PostgreSQL.

In addition, it supports an in-memory database that helps to write tests for our applications or to make
the development cycle easier because you don’t need a real database up and running.

In the next section, we will see how to set up a project for using EF and its main features.

Setting up the project

From the project root, create an Icecream.cs class and give it the following content:

namespace Chapter07.Models;

public class Icecream

{

    public int Id { get; set; }

    public string? Name { get; set; }

https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter07
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter07
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter07

Using Entity Framework 137

    public string? Description { get; set; }

}

The Icecream class is an object that represents an ice cream in our project. This class should be called
a data model, and we will use this object in the next sections of this chapter to map it to a database table.

Now it’s time to add the EF Core NuGet reference to the project.

In order to do that, you can use one of the following methods:

•	 In a new terminal window, enter the following code to add the EF Core InMemory package:

dotnet add package Microsoft.EntityFrameworkCore.InMemory

•	 If you would like to use Visual Studio 2022 to add the reference, right-click on Dependencies and
then select Manage NuGet Packages. Search for Microsoft.EntityFrameworkCore.
InMemory and install the package.

In the next section, we will be adding EF Core to our project.

Adding EF Core to the project

In order to store the ice cream objects in the database, we need to set up EF Core in our project.

To set up an in-memory database, add the following code to the bottom of the Program.cs file:

class IcecreamDb : DbContext

{

    public IcecreamDb(DbContextOptions options) :

      base(options) { }

    public DbSet<Icecream> Icecreams { get; set; } = null!;

}

DbContext object represents a connection to the database, and it’s used to save and query instances
of entities in the database.

The DbSet represents the instances of the entities, and they will be converted into a real table in the
database.

In this case, we will have just one table in the database, called Icecreams.

In Program.cs, after the builder initialization, add the following code:

builder.Services.AddDbContext<IcecreamDb>(options => options.
UseInMemoryDatabase("icecreams"));

Integration with the Data Access Layer138

Now we are ready to add some API endpoints to start interacting with the database.

Adding endpoints to the project

Let’s add the code to create a new item in the icecreams list. In Program.cs, add the following
code before the app.Run() line of code:

app.MapPost("/icecreams", async (IcecreamDb db, Icecream
icecream) =>

{

    await db.Icecreams.AddAsync(icecream);

    await db.SaveChangesAsync();

    return Results.Created($"/icecreams/{icecream.Id}",

                           icecream);

});

The first parameter of the MapPost function is the DbContext. By default, the minimal API architecture
uses dependency injection to share the instances of the DbContext.

Dependency injection
If you want to know more about dependency injection, go to Chapter 4, Dependency Injection
in a Minimal API Project.

In order to save an item into the database, we use the AddSync method directly from the entity that
represents the object.

To persist the new item in the database, we need to call the SaveChangesAsync() method,
which is responsible for saving all the changes that happen to the database before the last call to
SaveChangesAsync().

In a very similar way, we can add the endpoint to retrieve all the items in the icecreams database.

After the code to add an ice cream, we can add the following code:

app.MapGet("/icecreams", async (IcecreamDb db) => await
db.Icecreams.ToListAsync());

Also, in this case, the DbContext is available as a parameter and we can retrieve all the items in the
database directly from the entities in the DbContext.

With the ToListAsync() method, the application loads all the entities in the database and sends
them back as the endpoint result.

Using Entity Framework 139

Make sure you have saved all your changes in the project and run the app.

A new browser window will open, and you can navigate to the /swagger URL:

Figure 7.1 – Swagger browser window

Select the POST/icecreams button, followed by Try it out.

Replace the request body content with the following JSON:

{

  "id": 0,

  "name": "icecream 1",

  "description": "description 1"

}

Integration with the Data Access Layer140

Click on Execute:

Figure 7.2 – Swagger response

Now we have at least one item in the database, and we can try the other endpoint to retrieve all the
items in the database.

Scroll down the page a little bit and select GET/icecreams, followed by Try it out and then Execute.

You will see the list with one item under Response Body.

Let’s see how to finalize this first demo by adding the other CRUD operations to our endpoints:

1.	 To get an item by ID, add the following code under the app.MapGet route you created earlier:

app.MapGet("/icecreams/{id}", async (IcecreamDb db, int
id) => await db.Icecreams.FindAsync(id));

To check this out, you can launch the application again and use the Swagger UI as before.

2.	 Next, add an item in the database by performing a post call (as in the previous section).

3.	 Click GET/icecreams/{id) followed by Try it out.

4.	 Insert the value 1 in the id parameter field and then click on Execute.

5.	 You will see the item in the Response Body section.

Using Entity Framework 141

6.	 The following is an example of a response from the API:

{

  "id": 1,

  "name": "icecream 1",

  "description": "description 1"

}

This is what the response looks like:

Figure 7.3 – Response result

To update an item by ID, we can create a new MapPut endpoint with two parameters: the item with
the entity values and the ID of the old entity in the database that we want to update.

The code should be like the following snippet:

app.MapPut("/icecreams/{id}", async (IcecreamDb db, Icecream
updateicecream, int id) =>

{

    var icecream = await db.Icecreams.FindAsync(id);

Integration with the Data Access Layer142

    if (icecream is null) return Results.NotFound();

    icecream.Name = updateicecream.Name;

    icecream.Description = updateicecream.Description;

    await db.SaveChangesAsync();

    return Results.NoContent();

});

Just to be clear, first of all, we need to find the item in the database with the ID from the parameters.
If we don’t find an item in the database, it’s a good practice to return a Not Found HTTP status to
the caller.

If we find the entity in the database, we update the entity with the new values and we save all the
changes in the database before sending back the HTTP status No Content.

The last CRUD operation we need to perform is to delete an item from the database.

This operation is very similar to the update operation because, first of all, we need to find the item in
the database and then we can try to perform the delete operation.

The following code snippet shows how to implement a delete operation with the right HTTP verb of
the minimal API:

app.MapDelete("/icecreams/{id}", async (IcecreamDb db, int id)
=>

{

    var icecream = await db.Icecreams.FindAsync(id);

    if (icecream is null)

    {

        return Results.NotFound();

    }

    db.Icecreams.Remove(icecream);

    await db.SaveChangesAsync();

    return Results.Ok();

});

In this section, we have learned how to use EF in a minimal API project.

We saw how to add the NuGet packages to start working with EF, and how to implement the entire
set of CRUD operations in a minimal API .NET 6 project.

In the next section, we will see how to implement the same project with the same logic but using
Dapper as the primary library to access data.

Using Dapper 143

Using Dapper
Dapper is an Object-Relational Mapper (ORM) or, to be more precise, a micro ORM. With Dapper,
we can write SQL statements directly in .NET projects like we can do in SQL Server (or another
database). One of the best advantages of using Dapper in a project is the performance, because it doesn’t
translate queries from .NET objects and doesn’t add any layers between the application and the library
to access the database. It extends the IDbConnection object and provides a lot of methods to query
the database. This means we have to write queries that are compatible with the database provider.

It supports synchronous and asynchronous method executions. This is a list of the methods that
Dapper adds to the IDbConnection interface:

•	 Execute

•	 Query

•	 QueryFirst

•	 QueryFirstOrDefault

•	 QuerySingle

•	 QuerySingleOrDefault

•	 QueryMultiple

As we mentioned, it provides an async version for all these methods. You can find the right methods
by adding the Async keyword at the end of the method name.

In the next section, we will see how to set up a project for using Dapper with a SQL Server LocalDB.

Setting up the project

The first thing we are going to do is to create a new database. You can use your SQL Server LocalDB
instance installed with Visual Studio by default or another SQL Server instance in your environment.

You can execute the following script in your database to create one table and populate it with data:

CREATE TABLE [dbo].[Icecreams](

     [Id] [int] IDENTITY(1,1) NOT NULL,

     [Name] [nvarchar](50) NOT NULL,

     [Description] [nvarchar](255) NOT NULL)

GO

INSERT [dbo].[Icecreams] ([Name], [Description]) VALUES
('Icecream 1','Description 1')

Integration with the Data Access Layer144

INSERT [dbo].[Icecreams] ([Name], [Description]) VALUES
('Icecream 2','Description 2')

INSERT [dbo].[Icecreams] ([Name], [Description]) VALUES
('Icecream 3','Description 3')

Once we have the database, we can install these NuGet packages with the following command in the
Visual Studio terminal:

Install-Package Dapper

Install-Package Microsoft.Data.SqlClient

Now we can continue to add the code to interact with the database. In this example, we are going to
use a repository pattern.

Creating a repository pattern

In this section, we are going to create a simple repository pattern, but we will try to make it as simple
as possible so we can understand the main features of Dapper:

1.	 In the Program.cs file, add a simple class that represents our entity in the database:

public class Icecream

{

    public int Id { get; set; }

    public string? Name { get; set; }

    public string? Description { get; set; }

}

2.	 After this, modify the appsettings.json file by adding the connection string at the end
of the file:

"ConnectionStrings": {

    "SqlConnection":

      "Data Source=(localdb)\\MSSQLLocalDB;

       Initial Catalog=Chapter07;

       Integrated Security=True;

       Connect Timeout=30;

       Encrypt=False;

       TrustServerCertificate=False;"

}

Using Dapper 145

If you are using LocalDB, the connection string should be the right one for your environment
as well.

3.	 Create a new class in the root of the project called DapperContext and give it the following
code:

public class DapperContext

{

    private readonly IConfiguration _configuration;

    private readonly string _connectionString;

    public DapperContext(IConfiguration configuration)

    {

        _configuration = configuration;

        _connectionString = _configuration

          .GetConnectionString("SqlConnection");

    }

    public IDbConnection CreateConnection()

        => new SqlConnection(_connectionString);

}

We injected with dependency injection the IConfiguration interface to retrieve the
connection string from the settings file.

4.	 Now we are going to create the interface and the implementation of our repository. In order
to do that, add the following code to the Program.cs file.

public interface IIcecreamsRepository

{

}

public class IcecreamsRepository : IIcecreamsRepository

{

    private readonly DapperContext _context;

    public IcecreamsRepository(DapperContext context)

    {

        _context = context;

    }

}

Integration with the Data Access Layer146

In the next sections, we will be adding some code to the interface and to the implementation
of the repository.

Finally, we can register the context, the interface, and its implementation as a service.

5.	 Let’s put the following code after the builder initialization in the Program.cs file:

builder.Services.AddSingleton<DapperContext>();

builder.Services.AddScoped<IIcecreamsRepository,
IcecreamsRepository>();

Now we are ready to implement the first query.

Using Dapper to query the database

First of all, let’s modify the IIcecreamsRepository interface by adding a new method:

public Task<IEnumerable<Icecream>> GetIcecreams();

Then, let’s implement this method in the IcecreamsRepository class:

public async Task<IEnumerable<Icecream>> GetIcecreams()

{

    var query = "SELECT * FROM Icecreams";

    using (var connection = _context.CreateConnection())

    {

        var result =

          await connection.QueryAsync<Icecream>(query);

        return result.ToList();

    }

}

Let’s try to understand all the steps in this method. We created a string called query, where we store
the SQL query to fetch all the entities from the database.

Then, inside the using statement, we used DapperContext to create the connection.

Once the connection was created, we used it to call the QueryAsync method and passed the query
as an argument.

Dapper, when the results return from the database, converted them into IEnumerable<T>
automatically.

Using Dapper 147

The following is the final code of the interface and our first implementation:

public interface IIcecreamsRepository

{

    public Task<IEnumerable<Icecream>> GetIcecreams();

}

public class IcecreamsRepository : IIcecreamsRepository

{

    private readonly DapperContext _context;

    public IcecreamsRepository(DapperContext context)

    {

        _context = context;

    }

    public async Task<IEnumerable<Icecream>> GetIcecreams()

    {

        var query = "SELECT * FROM Icecreams";

        using (var connection =

              _context.CreateConnection())

        {

            var result =

              await connection.QueryAsync<Icecream>(query);

            return result.ToList();

        }

    }

}

In the next section, we will see how to add a new entity to the database and how to use the ExecuteAsync
method to run a query.

Integration with the Data Access Layer148

Adding a new entity in the database with Dapper

Now we are going to manage adding a new entity to the database for future implementations of the
API post request.

Let’s modify the interface by adding a new method called CreateIcecream with an input parameter
of the Icecream type:

public Task CreateIcecream(Icecream icecream);

Now we must implement this method in the repository class:

public async Task CreateIcecream(Icecream icecream)

{

    var query = "INSERT INTO Icecreams (Name, Description)

      VALUES (@Name, @Description)";

    var parameters = new DynamicParameters();

    parameters.Add("Name", icecream.Name, DbType.String);

    parameters.Add("Description", icecream.Description,

                    DbType.String);

    using (var connection = _context.CreateConnection())

    {

        await connection.ExecuteAsync(query, parameters);

    }

}

Here, we create the query and a dynamic parameters object to pass all the values to the database.

We populate the parameters with the values from the Icecream object in the method parameter.

We create the connection with the Dapper context and then we use the ExecuteAsync method to
execute the INSERT statement.

This method returns an integer value as a result, representing the number of affected rows in the
database. In this case, we don’t use this information, but you can return this value as the result of the
method if you need it.

Summary 149

Implementing the repository in the endpoints

To add the final touch to our minimal API, we need to implement the two endpoints to manage all
the methods in our repository pattern:

app.MapPost("/icecreams", async (IIcecreamsRepository
repository, Icecream icecream) =>

{

    await repository.CreateIcecream(icecream);

    return Results.Ok();

});

app.MapGet("/icecreams", async (IIcecreamsRepository
repository) => await repository.GetIcecreams());

In both map methods, we pass the repository as a parameter because, as usual in the minimal API,
the services are passed as parameters in the map methods.

This means that the repository is always available in all parts of the code.

In the MapGet endpoint, we use the repository to load all the entities from the implementation of
the repository and we use the result as the result of the endpoint.

In the MapPost endpoint, in addition to the repository parameter, we accept also the Icecream entity
from the body of the request and we use the same entity as a parameter to the CreateIcecream
method of the repository.

Summary
In this chapter, we learned how to interact with a data access layer in a minimal API project with the
two most common tools in a real-world scenario: EF and Dapper.

For EF, we covered some basic features, such as setting up a project to use this ORM and how to
perform some basic operations to implement a full CRUD API endpoint.

We did basically the same thing with Dapper as well, starting from an empty project, adding Dapper,
setting up the project for working with a SQL Server LocalDB, and implementing some basic interactions
with the entities of the database.

In the next chapter, we’ll focus on authentication and authorization in a minimal API project. It’s
important, first of all, to protect your data in the database.

Part 3:
Advanced Development and

Microservices Concepts

In this advanced section of the book, we want to show more scenarios that are typical in backend
development. We will also go over the performance of this new framework and understand the
scenarios in which it is really useful.

We will cover the following chapters in this section:

•	 Chapter 8, Adding Authentication and Authorization

•	 Chapter 9, Leveraging Globalization and Localization

•	 Chapter 10, Evaluating and Benchmarking the Performance of Minimal APIs

8
Adding Authentication and

Authorization

Any kind of application must deal with authentication and authorization. Often, these terms are
used interchangeably, but they actually refer to different scenarios. In this chapter of the book, we will
explain the difference between authentication and authorization and show how to add these features
to a minimal API project.

Authentication can be performed in many different ways: using local accounts with external login
providers, such as Microsoft, Google, Facebook, and Twitter; using Azure Active Directory and Azure
B2C; and using authentication servers such as Identity Server and Okta. Moreover, we may have to deal
with requirements such as two-factor authentication and refresh tokens. In this chapter, however, we
will focus on the general aspects of authentication and authorization and see how to implement them in
a minimal API project, in order to provide a general understanding of the topic. The information and
samples that will be provided will show how to effectively work with authentication and authorization
and how to customize their behaviors according to our requirements.

In this chapter, we will be covering the following topics:

•	 Introducing authentication and authorization

•	 Protecting a minimal API

•	 Handling authorization – roles and policies

Technical requirements
To follow the examples in this chapter, you will need to create an ASP.NET Core 6.0 Web API
application. Refer to the Technical requirements section in Chapter 2, Exploring Minimal APIs and
Their Advantages, for instructions on how to do so.

If you’re using your console, shell, or Bash terminal to create the API, remember to change your
working directory to the current chapter number: Chapter08.

Adding Authentication and Authorization154

All the code samples in this chapter can be found in the GitHub repository for this book at https://
github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/
Chapter08.

Introducing authentication and authorization
As said at the beginning, the terms authentication and authorization are often used interchangeably,
but they represent different security functions. Authentication is the process of verifying that users
are who they say they are, while authorization is the task of granting an authenticated user permission
to do something. So, authorization must always follow authentication.

Let’s think about the security in an airport: first, you show your ID to authenticate your identity; then, at
the gate, you present the boarding pass to be authorized to board the flight and get access to the plane.

Authentication and authorization in ASP.NET Core are handled by corresponding middleware and
work in the same way in minimal APIs and controller-based projects. They allow the restriction of
access to endpoints depending on user identity, roles, policies, and so on, as we’ll see in detail in the
following sections.

You can find a great overview of ASP.NET Core authentication and authorization in the official
documentation available at https://docs.microsoft.com/aspnet/core/security/
authentication and https://docs.microsoft.com/aspnet/core/security/
authorization.

Protecting a minimal API
Protecting a minimal API means correctly setting up authentication and authorization. There are many
types of authentication solutions that are adopted in modern applications. In web applications, we
typically use cookies, while when dealing with web APIs, we use methods such as an API key, basic
authentication, and JSON Web Token (JWT). JWTs are the most commonly used, and in the rest of
the chapter, we’ll focus on this solution.

Note
A good starting point to understand what JWTs are and how they are used is available at
https://jwt.io/introduction.

https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter08
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter08
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter08
https://docs.microsoft.com/aspnet/core/security/authentication
https://docs.microsoft.com/aspnet/core/security/authentication
https://docs.microsoft.com/aspnet/core/security/authorization
https://docs.microsoft.com/aspnet/core/security/authorization
https://jwt.io/introduction

Protecting a minimal API 155

To enable authentication and authorization based on JWT, the first thing to do is to add the Microsoft.
AspNetCore.Authentication.JwtBearer NuGet package to our project, using one of the
following ways:

•	 Option 1: If you’re using Visual Studio 2022, right-click on the project and choose the Manage
NuGet Packages command to open Package Manager GUI, then search for Microsoft.
AspNetCore.Authentication.JwtBearer and click on Install.

•	 Option 2: Open Package Manager Console if you’re inside Visual Studio 2022, or open your
console, shell, or Bash terminal, go to your project directory, and execute the following command:

dotnet add package Microsoft.AspNetCore.Authentication.
JwtBearer

Now, we need to add authentication and authorization services to the service provider, so that they
are available through dependency injection:

var builder = WebApplication.CreateBuilder(args);

//...

builder.Services.AddAuthentication(JwtBearerDefaults.
AuthenticationScheme).AddJwtBearer();

builder.Services.AddAuthorization();

This is the minimum code that is necessary to add JWT authentication and authorization support to an
ASP.NET Core project. It isn’t a real working solution yet, because it is missing the actual configuration,
but it is enough to verify how endpoint protection works.

In the AddAuthentication() method, we specify that we want to use the bearer authentication
scheme. This is an HTTP authentication scheme that involves security tokens that are in fact called
bearer tokens. These tokens must be sent in the Authorization HTTP header with the format
Authorization: Bearer <token>. Then, we call AddJwtBearer() to tell ASP.NET Core
that it must expect a bearer token in the JWT format. As we’ll see later, the bearer token is an encoded
string generated by the server in response to a login request. After that, we use AddAuthorization()
to also add authorization services.

Now, we need to insert authentication and authorization middleware in the pipeline so that ASP.NET
Core will be instructed to check the token and apply all the authorization rules:

var app = builder.Build();

//..

app.UseAuthentication();

app.UseAuthorization();

Adding Authentication and Authorization156

//...

app.Run();

Important Note
We have said that authorization must follow authentication. This means that the authentication
middleware must come first; otherwise, the security will not work as expected.

Finally, we can protect our endpoints using the A u t h o r i z e attribute or the
RequireAuthorization() method:

app.MapGet("/api/attribute-protected", [Authorize] () => "This
endpoint is protected using the Authorize attribute");

app.MapGet("/api/method-protected", () => "This endpoint is
protected using the RequireAuthorization method")

.RequireAuthorization();

Note
The ability to specify an attribute directly on a lambda expression (as in the first endpoint of
the previous example) is a new feature of C# 10.

If we now try to call each of these methods using Swagger, we’ll get a 401 unauthorized response,
which should look as follows:

Figure 8.1 – Unauthorized response in Swagger

Note that the message contains a header indicating that the expected authentication scheme is Bearer,
as we have declared in the code.

So, now we know how to restrict access to our endpoints to authenticated users. But our work isn’t
finished: we need to generate a JWT bearer, validate it, and find a way to pass such a token to Swagger
so that we can test our protected endpoints.

Protecting a minimal API 157

Generating a JWT bearer

We have said that a JWT bearer is generated by the server as a response to a login request. ASP.NET
Core provides all the APIs we need to create it, so let’s see how to perform this task.

The first thing to do is to define the login request endpoint to authenticate the user with their username
and password:

app.MapPost("/api/auth/login", (LoginRequest request) =>

{

    if (request.Username == "marco" && request.Password ==

        "P@$$w0rd")

    {

        // Generate the JWT bearer...

    }

    return Results.BadRequest();

});

For the sake of simplicity, in the preceding example, we have used hardcoded values, but in a real
application, we’d use, for example, ASP.NET Core Identity, the part of ASP.NET Core that is responsible
for user management. More information on this topic is available in the official documentation at
https://docs.microsoft.com/aspnet/core/security/authentication/
identity.

In a typical login workflow, if the credentials are invalid, we return a 400 Bad Request response
to the client. If, instead, the username and password are correct, we can effectively generate a JWT
bearer, using the classes available in ASP.NET Core:

var claims = new List<Claim>()

{

    new(ClaimTypes.Name, request.Username)

};

var securityKey = new SymmetricSecurityKey(Encoding.UTF8.
GetBytes("mysecuritystring"));

var credentials = new SigningCredentials(securityKey,
SecurityAlgorithms.HmacSha256);

var jwtSecurityToken = new JwtSecurityToken(

    issuer: "https://www.packtpub.com",

https://docs.microsoft.com/aspnet/core/security/authentication/identity
https://docs.microsoft.com/aspnet/core/security/authentication/identity

Adding Authentication and Authorization158

    audience: "Minimal APIs Client",

    claims: claims, expires: DateTime.UtcNow.AddHours(1),

      signingCredentials: credentials);

var accessToken = new JwtSecurityTokenHandler()

  .WriteToken(jwtSecurityToken);

return Results.Ok(new { AccessToken = accessToken });

JWT bearer creation involves many different concepts, but through the preceding code example,
we’ll focus on the basic ones. This kind of bearer contains information that allows verifying the user
identity, along with other declarations that describe the properties of the user. These properties are
called claims and are expressed as string key-value pairs. In the preceding code, we created a list
with a single claim that contains the username. We can add as many claims as we need, and we can
also have claims with the same name. In the next sections, we’ll see how to use claims, for example,
to enforce authorization.

Next in the preceding code, we defined the credentials (SigningCredentials) to sign the
JWT bearer. The signature depends on the actual token content and is used to check that the token
hasn’t been tampered with. In fact, if we change anything in the token, such as a claim value, the
signature will consequentially change. As the key to sign the bearer is known only by the server, it
is impossible for a third party to modify the token and sustain its validity. In the preceding code, we
used SymmetricSecurityKey, which is never shared with clients.

We used a short string to create the credentials, but the only requirement is that the key should be at
least 32 bytes or 16 characters long. In .NET, strings are Unicode and therefore, each character takes 2
bytes. We also needed to set the algorithm that the credentials will use to sign the token. To this end,
we have specified the Hash-Based Message Authentication Code (HMAC) and the hash function,
SHA256, specifying the SecurityAlgorithms.HmacSha256 value. This algorithm is quite a
common choice in these kinds of scenarios.

Note
You can find more information about the HMAC and the SHA256 hash function at https://
docs.microsoft.com/dotnet/api/system.security.cryptography.
hmacsha256#remarks.

https://docs.microsoft.com/dotnet/api/system.security.cryptography.hmacsha256#remarks
https://docs.microsoft.com/dotnet/api/system.security.cryptography.hmacsha256#remarks
https://docs.microsoft.com/dotnet/api/system.security.cryptography.hmacsha256#remarks

Protecting a minimal API 159

By this point in the preceding code, we finally have all the information to create the token, so we can
instantiate a JwtSecurityToken object. This class can use many parameters to build the token,
but for the sake of simplicity, we have specified only the minimum set for a working example:

•	 Issuer: A string (typically a URI) that identifies the name of the entity that is creating the token

•	 Audience: The recipient that the JWT is intended for, that is, who can consume the token

•	 The list of claims

•	 The expiration time of the token (in UTC)

•	 The signing credentials

Tip
In the preceding code example, values used to build the token are hardcoded, but in a real-life
application, we should place them in an external source, for example, in the appsettings.
json configuration file.

You can find further information on creating a token at https://docs.microsoft.com/
dotnet/api/system.identitymodel.tokens.jwt.jwtsecuritytoken.

After all the preceding steps, we could create JwtSecurityTokenHandler, which is responsible
for actually generating the bearer token and returning it to the caller with a 200 OK response.

So, now we can try the login endpoint in Swagger. After inserting the correct username and password
and clicking the Execute button, we will get the following response:

Figure 8.2 – The JWT bearer as a result of the login request in Swagger

https://docs.microsoft.com/dotnet/api/system.identitymodel.tokens.jwt.jwtsecuritytoken
https://docs.microsoft.com/dotnet/api/system.identitymodel.tokens.jwt.jwtsecuritytoken

Adding Authentication and Authorization160

We can copy the token value and insert it in the URL of the site https://jwt.ms to see what it
contains. We’ll get something like this:

{

  "alg": "HS256",

  "typ": "JWT"

}.{

  "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name":
"marco",

  "exp": 1644431527,

  "iss": "https://www.packtpub.com",

  "aud": "Minimal APIs Client"

}.[Signature]

In particular, we see the claims that have been configured:

•	 name: The name of the logged user

•	 exp: The token expiration time, expressed in Unix epoch

•	 iss: The issuer of the token

•	 aud: The audience (receiver) of the token

This is the raw view, but we can switch to the Claims tab to see the decoded list of all the claims, with
a description of their meaning, where available.

There is one important point that requires attention: by default, the JWT bearer isn’t encrypted (it’s
just a Base64-encoded string), so everyone can read its content. Token security does not depend on
the inability to be decoded, but on the fact that it is signed. Even if the token’s content is clear, it is
impossible to modify it because in this case, the signature (which uses a key that is known only by
the server) will become invalid.

So, it’s important not to insert sensitive data in the token; claims such as usernames, user IDs, and
roles are usually fine, but, for example, we should not insert information related to privacy. To give a
deliberately exaggerated example, we mustn’t insert a credit card number in the token! In any case,
keep in mind that even Microsoft for Azure Active Directory uses JWT, with no encryption, so we
can trust this security system.

In conclusion, we have described how to obtain a valid JWT. The next steps are to pass the token to
our protected endpoints and instruct our minimal API on how to validate it.

https://jwt.ms

Protecting a minimal API 161

Validating a JWT bearer

After creating the JWT bearer, we need to pass it in every HTTP request, inside the Authorization
HTTP header, so that ASP.NET Core can verify its validity and allow us to invoke the protected
endpoints. So, we have to complete the AddJwtBearer() method invocation that we showed
earlier with the description of the rules to validate the bearer:

builder.Services.AddAuthentication(JwtBearerDefaults.
AuthenticationScheme)

.AddJwtBearer(options =>

{

    options.TokenValidationParameters = new
TokenValidationParameters

    {

        ValidateIssuerSigningKey = true,

        IssuerSigningKey = new SymmetricSecurityKey(

          Encoding.UTF8.GetBytes("mysecuritystring")),

        ValidIssuer = "https://www.packtpub.com",

        ValidAudience = "Minimal APIs Client"

    };

});

In the preceding code, we added a lambda expression with which we defined the
TokenValidationParameter object that contains the token validation rules. First of all, we
checked the issuer signing key, that is, the signature of the token, as shown in the Generating a JWT bearer
section, to verify that the JWT has not been tampered with. The security string that has been used to
sign the token is required to perform this check, so we specify the same value (mysecuritystring)
that we inserted during the login request.

Then, we specify what valid values for the issuer and the audience of the token are. If the token has
been emitted from a different issuer, or was intended for another audience, the validation fails. This
is an important security check; we should be sure that the bearer has been issued by someone we
expected to issue it and for the audience we want.

Tip
As already pointed out, we should place the information used to work with the token in an
external source, so that we can reference the correct values during token generation and
validation, avoiding hardcoding them or writing their values twice.

Adding Authentication and Authorization162

We don’t need to specify that we also want to validate the token expiration because this check is
automatically enabled. A clock skew is applied when validating the time to compensate for slight
differences in clock time or to handle delays between the client request and the instant at which it is
processed by the server. The default value is 5 minutes, which means that an expired token is considered
valid for a 5-minute timeframe after its actual expiration. We can reduce the clock skew, or disable it,
using the ClockSkew property of the TokenValidationParameter class.

Now, the minimal API has all the information to check the bearer token validity. In order to test
whether everything works as expected, we need a way to tell Swagger how to send the token within
a request, as we’ll see in the next section.

Adding JWT support to Swagger

We have said that the bearer token is sent in the Authorization HTTP header of a request. If we
want to use Swagger to verify the authentication system and test our protected endpoints, we need to
update the configuration so that it will be able to include this header in the requests.

To perform this task, it is necessary to add a bit of code to the AddSwaggerGen() method:

var builder = WebApplication.CreateBuilder(args);

//...

builder.Services.AddSwaggerGen(options =>

{

    options.AddSecurityDefinition(JwtBearerDefaults.
AuthenticationScheme, new OpenApiSecurityScheme

    {

        Type = SecuritySchemeType.ApiKey,

        In = ParameterLocation.Header,

        Name = HeaderNames.Authorization,

        Description = "Insert the token with the 'Bearer '

                       prefix"

    });

    options.AddSecurityRequirement(new

      OpenApiSecurityRequirement

    {

        {

            new OpenApiSecurityScheme

            {

Protecting a minimal API 163

                Reference = new OpenApiReference

                {

                    Type = ReferenceType.SecurityScheme,

                    Id =

                     JwtBearerDefaults.AuthenticationScheme

                }

            },

            Array.Empty<string>()

        }

    });

});

In the preceding code, we defined how Swagger handles authentication. Using the
AddSecurityDefinition() method, we described how our API is protected; we used an
API key, which is the bearer token, in the header with the name Authorization. Then, with
AddSecurityRequirement(), we specified that we have a security requirement for our endpoints,
which means that the security information must be sent for every request.

After adding the preceding code, if we now run our application, the Swagger UI will contain
something new.

Figure 8.3 – Swagger showing the authentication features

Adding Authentication and Authorization164

Upon clicking the Authorize button or any of the padlock icons at the right of the endpoints, the
following window will show up, allowing us to insert the bearer token:

Figure 8.4 – The window that allows setting the bearer token

The last thing to do is to insert the token in the Value textbox and confirm by clicking on Authorize.
From now on, the specified bearer will be sent along with every request made with Swagger.

We have finally completed all the required steps to add authentication support to minimal APIs. Now,
it’s time to verify that everything works as expected. In the next section, we’ll perform some tests.

Testing authentication

As described in the previous sections, if we call one of the protected endpoints, we get a 401
Unauthorized response. To verify that token authentication works, let’s call the login endpoint
to get a token. After that, click on the Authorize button in Swagger and insert the obtained token,
remembering the Bearer<space> prefix. Now, we’ll get a 200 OK response, meaning that we are
able to correctly invoke the endpoints that require authentication. We can also try changing a single
character in the token to again get the 401 Unauthorized response, because in this case, the
signature will not be the expected one, as described before. In the same way, if the token is formally
valid but has expired, we will obtain a 401 response.

As we have defined endpoints that can be reached only by authenticated users, a common requirement
is to access user information within the corresponding route handlers. In Chapter 2, Exploring Minimal
APIs and Their Advantages, we showed that minimal APIs provide a special binding that directly
provides a ClaimsPrincipal object representing the logged user:

app.MapGet("/api/me", [Authorize] (ClaimsPrincipal user) =>
$"Logged username: {user.Identity.Name}");

Handling authorization – roles and policies 165

The user parameter of the route handler is automatically filled with user information. In this example,
we just get the name, which in turn is read from the token claims, but the object exposes many
properties that allow us to work with authentication data. We can refer to the official documentation
at https://docs.microsoft.com/dotnet/api/system.security.claims.
claimsprincipal.identity for further details.

This ends our overview of authentication. In the next section, we’ll see how to handle authorization.

Handling authorization – roles and policies
Right after the authentication, there is the authorization step, which grants an authenticated user
permission to do something. Minimal APIs provide the same authorization features as controller-
based projects, based on the concepts of roles and policies.

When an identity is created, it may belong to one or more roles. For example, a user can belong to the
Administrator role, while another can be part of two roles: User and Stakeholder. Typically,
each user can perform only the operations that are allowed by their roles. Roles are just claims that are
inserted in the JWT bearer upon authentication. As we’ll see in a moment, ASP.NET Core provides
built-in support to verify whether a user belongs to a role.

While role-based authorization covers many scenarios, there are cases in which this kind of security
isn’t enough because we need to apply more specific rules to check whether the user has the right to
perform some activities. In such a situation, we can create custom policies that allow us to specify
more detailed authorization requirements and even completely define the authorization logic based
on our algorithms.

In the next sections, we’ll see how to manage both role-based and policy-based authorization in our
APIs, so that we can cover all our requirements, that is, allowing access to certain endpoints only to
users with specific roles or claims, or based on our custom logic.

Handling role-based authorization

As already introduced, roles are claims. This means that they must be inserted in the JWT bearer
token upon authentication, just like any other claims:

app.MapPost("/api/auth/login", (LoginRequest request) =>

{

    if (request.Username == "marco" && request.Password ==

        "P@$$w0rd")

    {

        var claims = new List<Claim>()

        {

            new(ClaimTypes.Name, request.Username),

https://docs.microsoft.com/dotnet/api/system.security.claims.claimsprincipal.identity
https://docs.microsoft.com/dotnet/api/system.security.claims.claimsprincipal.identity

Adding Authentication and Authorization166

            new(ClaimTypes.Role, "Administrator"),

            new(ClaimTypes.Role, "User")

        };

        

    //...

}

In this example, we statically add two claims with name ClaimTypes.Role: Administrator
and User. As said in the previous sections, in a real-world application, these values typically come
from a complete user management system built, for example, with ASP.NET Core Identity.

As in all the other claims, roles are inserted in the JWT bearer. If now we try to invoke the login
endpoint, we’ll notice that the token is longer because it contains a lot of information, which we can
verify using the https://jwt.ms site again, as follows:

{

  "alg": "HS256",

  "typ": "JWT"

}.{

  "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name":
"marco",

  "http://schemas.microsoft.com/ws/2008/06/identity/claims/
role": [

    "Administrator",

    "User"

  ],

  "exp": 1644755166,

  "iss": "https://www.packtpub.com",

  "aud": "Minimal APIs Client"

}.[Signature]

In order to restrict access to a particular endpoint only for users that belong to a given role, we need to
specify this role as an argument in the Authorize attribute or the RequireAuthorization()
method:

app.MapGet("/api/admin-attribute-protected", [Authorize(Roles =
"Administrator")] () => { });

app.MapGet("/api/admin-method-protected", () => { })

https://jwt.ms

Handling authorization – roles and policies 167

.RequireAuthorization(new AuthorizeAttribute { Roles =
"Administrator" });

In this way, only users who are assigned the Administrator role can access the endpoints. We
can also specify more roles, separating them with a comma: the user will be authorized if they have
at least one of the specified roles.

Important Note
Role names are case sensitive.

Now suppose we have the following endpoint:

app.MapGet("/api/stackeholder-protected", [Authorize(Roles =
"Stakeholder")] () => { });

This method can only be consumed by a user who is assigned the Stakeholder role. However,
in our example, this role isn’t assigned. So, if we use the previous bearer token and try to invoke
this endpoint, of course, we’ll get an error. But in this case, it won’t be 401 Unauthorized, but
rather 403 Forbidden. We see this behavior because the user is actually authenticated (meaning
the token is valid, so no 401 error), but they don’t have the authorization to execute the method, so
access is forbidden. In other words, authentication errors and authorization errors lead to different
HTTP status codes.

There is another important scenario that involves roles. Sometimes, we don’t need to restrict endpoint
access at all but need to adapt the behavior of the handler according to the specific user role, such as
when retrieving only a certain type of information. In this case, we can use the IsInRole() method,
which is available on the ClaimsPrincipal object:

app.MapGet("/api/role-check", [Authorize] (ClaimsPrincipal
user) =>

{

    if (user.IsInRole("Administrator"))

    {

        return "User is an Administrator";

    }

    return "This is a normal user";

});

Adding Authentication and Authorization168

In this endpoint, we only use the Authorize attribute to check whether the user is authenticated or
not. Then, in the route handler, we check whether the user has the Administrator role. If yes, we
just return a message, but we can imagine that administrators can retrieve all the available information,
while normal users get only a subset, based on the values of the information itself.

As we have seen, with role-based authorization, we can perform different types of authorization checks
in our endpoints, to cover many scenarios. However, this approach cannot handle all situations. If roles
aren’t enough, we need to use authorization based on policies, which we will discuss in the next section.

Applying policy-based authorization

Policies are a more general way to define authorization rules. Role-based authorization can be considered
a specific policy authorization that involves a roles check. We typically use policies when we need to
handle more complex scenarios.

This kind of authorization requires two steps:

1.	 Defining a policy with a rule set

2.	 Applying a certain policy on the endpoints

Policies are added in the context of the AddAuthorization() method, which we saw in the
previous section, Protecting a minimal API. Each policy has a unique name, which is used to later
reference it, and a set of rules, which are typically described in a fluent manner.

We can use policies when role authorization is not enough. Suppose that the bearer token also contains
the ID of the tenant to which the user belongs:

var claims = new List<Claim>()

{

    // ...

    new("tenant-id", "42")

};

Again, in a real-world scenario, this value could come from a database that stores the properties
of the user. Suppose that we want to only allow users who belong to a particular tenant to reach an
endpoint. As tenant-id is a custom claim, ASP.NET Core doesn’t know how to use it to enforce
authorization. So, we can’t use the solutions shown earlier. We need to define a custom policy with
the corresponding rule:

builder.Services.AddAuthorization(options =>

{

    options.AddPolicy("Tenant42", policy =>

    {

Handling authorization – roles and policies 169

        policy.RequireClaim("tenant-id", "42");

    });

});

In the preceding code, we created a policy named Tenant42, which requires that the token
contains the tenant-id claim with the value 42. The policy variable is an instance of
AuthorizationPolicyBuilder and exposes methods that allow us to fluently specify the
authorization rules; we can specify that a policy requires certain users, roles, and claims to be satisfied.
We can also chain multiple requirements in the same policy, writing, for example, something such as
policy.RequireRole(“Administrator”).RequireClaim(“tenant-id”). The full list
of methods is available on the documentation page at https://docs.microsoft.com/dotnet/
api/microsoft.aspnetcore.authorization.authorizationpolicybuilder.

Then, in the method we want to protect, we have to specify the policy name, as usual with the
Authorize attribute or the RequireAuthorization() method:

app.MapGet("/api/policy-attribute-protected", [Authorize(Policy
= "Tenant42")] () => { });

app.MapGet("/api/policy-method-protected", () => { })

.RequireAuthorization("Tenant42");

If we try to execute these preceding endpoints with a token that doesn’t have the tenant-id claim,
or its value isn’t 42, we get a 403 Forbidden result, as happened with the role check.

There are scenarios in which declaring a list of allowed roles and claims isn’t enough: for example, we
would need to perform more complex checks or verify authorization based on dynamic parameters. In
these cases, we can use the so-called policy requirements, which comprise a collection of authorization
rules for which we can provide custom verification logic.

To adopt this solution, we need two objects:

•	 A requirement class that implements the IAuthorizationRequirement interface and
defines the requirement we want to manage

•	 A handler class that inherits from AuthorizationHandler and contains the logic to
verify the requirement

Let’s suppose we don’t want users who don’t belong to the Administrator role to access certain
endpoints during a maintenance time window. This is a perfectly valid authorization rule, but we cannot
afford it using the solutions we have seen up to now. The rule involves a condition that considers the
current time, so the policy cannot be statically defined.

https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.authorizationpolicybuilder
https://docs.microsoft.com/dotnet/api/microsoft.aspnetcore.authorization.authorizationpolicybuilder

Adding Authentication and Authorization170

So, we start by creating a custom requirement:

public class MaintenanceTimeRequirement :
IAuthorizationRequirement

{

    public TimeOnly StartTime { get; init; }

    public TimeOnly EndTime { get; init; }

}

The requirement contains the start and end times of the maintenance window. During this interval,
we only want administrators to be able to operate.

Note
TimeOnly is a new data type that has been introduced with C# 10 and allows us to store only
only the time of the day (and not the date). More information is available at https://docs.
microsoft.com/dotnet/api/system.timeonly.

Note that the IAuthorizationRequirement interface is just a placeholder. It doesn’t contain
any method or property to be implemented; it serves only to identify that the class is a requirement.
In other words, if we don’t need any additional information for the requirement, we can create a class
that implements IAuthorizationRequirement but actually has no content at all.

This requirement must be enforced, so it is necessary to create the corresponding handler:

public class MaintenanceTimeAuthorizationHandler

    : AuthorizationHandler<MaintenanceTimeRequirement>

{

    protected override Task HandleRequirementAsync(

        AuthorizationHandlerContext context,

        MaintenanceTimeRequirement requirement)

    {

        var isAuthorized = true;

        if (!context.User.IsInRole("Administrator"))

        {

            var time = TimeOnly.FromDateTime(DateTime.Now);

            if (time >= requirement.StartTime && time <

                requirement.EndTime)

            {

https://docs.microsoft.com/dotnet/api/system.timeonly
https://docs.microsoft.com/dotnet/api/system.timeonly

Handling authorization – roles and policies 171

                isAuthorized = false;

            }

        }

        if (isAuthorized)

        {

            context.Succeed(requirement);

        }

        return Task.CompletedTask;

    }

}

Our handler inherits from AuthorizationHandler<MaintenanceTimeRequirement>, so
we need to override the HandleRequirementAsync() method to verify the requirement, using
the AuthorizationHandlerContext parameter, which contains a reference to the current user.
As said at the beginning, if the user is not assigned the Administrator role, we check whether the
current time falls in the maintenance window. If so, the user doesn’t have the right to access.

At the end, if the isAuthorized variable is true, it means that the authorization can be granted,
so we call the Succeed() method on the context object, passing the requirement that we want
to validate. Otherwise, we don’t invoke any method on the context, meaning that the requirement
hasn’t been verified.

We haven’t yet finished implementing the custom policy. We still have to define the policy and register
the handler in the service provider:

builder.Services.AddAuthorization(options =>

{

    options.AddPolicy("TimedAccessPolicy", policy =>

    {

        policy.Requirements.Add(new

          MaintenanceTimeRequirement

        {

            StartTime = new TimeOnly(0, 0, 0),

            EndTime = new TimeOnly(4, 0, 0)

        });

    });

Adding Authentication and Authorization172

});

builder.Services.AddScoped<IAuthorizationHandler,
MaintenanceTimeAuthorizationHandler>();

In the preceding code, we defined a maintenance time window from midnight till 4:00 in the morning.
Then, we registered the handler as an implementation of the IAuthorizationHandler interface,
which in turn is implemented by the AuthorizationHandler class.

Now that we have everything in place, we can apply the policy to our endpoints:

app.MapGet("/api/custom-policy-protected", [Authorize(Policy =
"TimedAccessPolicy")] () => { });

When we try to reach this endpoint, ASP.NET Core will check the corresponding policy, find that it
contains a requirement, and scan all the registrations of the IAuhorizationHandler interface
to see whether there is one that is able to handle the requirement. Then, the handler will be invoked,
and the result will be used to determine whether the user has the right to access the route. If the policy
isn’t verified, we’ll get a 403 Forbidden response.

We have shown how powerful policies are, but there is more. We can also use them to define global
rules that are automatically applied to all endpoints, using the concepts of default and fallback policies,
as we’ll see in the next section.

Using default and fallback policies

Default and fallback policies are useful when we want to define global rules that must be automatically
applied. In fact, when we use the Authorize attribute or the RequireAuthorization()
method, without any other parameter, we implicitly refer to the default policy defined by ASP.NET
Core, which is set to require an authenticated user.

If we want to use different conditions by default, we just need to redefine the DefaultPolicy
property, which is available in the context of the AddAuthorization() method:

builder.Services.AddAuthorization(options =>

{

    var policy = new AuthorizationPolicyBuilder()

      .RequireAuthenticatedUser()

        .RequireClaim("tenant-id").Build();

    options.DefaultPolicy = policy;    

});

Handling authorization – roles and policies 173

We use AuthorizationPolicyBuilder to define all the security requirements, then we set it
as a default policy. In this way, even if we don’t specify a custom policy in the Authorize attribute
or the RequireAuthorization() method, the system will always verify whether the user is
authenticated, and the bearer contains the tenant-id claim. Of course, we can override this default
behavior by just specifying roles or policy names in the authorization attribute or method.

A fallback policy, on the other hand, is the policy that is applied when there is no authorization
information on the endpoints. It is useful, for example, when we want all our endpoints to be
automatically protected, even if we forget to specify the Authorize attribute or just don’t want to
repeat the attribute for each handler. Let us try and understand this using the following code:

builder.Services.AddAuthorization(options =>

{

    options.FallbackPolicy = options.DefaultPolicy;

});

In the preceding code, FallbackPolicy becomes equal to DefaultPolicy. We have said that
the default policy requires that the user be authenticated, so the result of this code is that now, all the
endpoints automatically need authentication, even if we don’t explicitly protect them.

This is a typical solution to adopt when most of our endpoints have restricted access. We don’t need
to specify the Authorize attribute or use the RequireAuthorization() method anymore.
In other words, now all our endpoints are protected by default.

If we decide to use this approach, but a bunch of endpoints need public access, such as the login
endpoint, which everyone should be able to invoke, we can use the AllowAnonymous attribute or
the AllowAnonymous() method:

app.MapPost("/api/auth/login", [AllowAnonymous] (LoginRequest
request) => { });

// OR

app.MapPost("/api/auth/login", (LoginRequest request) => { })

.AllowAnonymous();

As the name implies, the preceding code will bypass all authorization checks for the endpoint, including
the default and fallback authorization policies.

To deepen our knowledge of policy-based authentication, we can refer to the official documentation
at https://docs.microsoft.com/aspnet/core/security/authorization/
policies.

https://docs.microsoft.com/aspnet/core/security/authorization/policies
https://docs.microsoft.com/aspnet/core/security/authorization/policies

Adding Authentication and Authorization174

Summary
Knowing how authentication and authorization work in minimal APIs is fundamental to developing
secure applications. Using JWT bearer authentication roles and policies, we can even define complex
authorization scenarios, with the ability to use both standard and custom rules.

In this chapter, we have introduced basic concepts to make a service secure, but there is much more
to talk about, especially regarding ASP.NET Core Identity: an API that supports login functionality
and allows managing users, passwords, profile data, roles, claims, and more. We can look further
into this topic by checking out the official documentation, which is available at https://docs.
microsoft.com/aspnet/core/security/authentication/identity.

In the next chapter, we will see how to add multilanguage support to our minimal APIs and how to
correctly handle applications that work with different date formats, time zones, and so on.

https://docs.microsoft.com/aspnet/core/security/authentication/identity
https://docs.microsoft.com/aspnet/core/security/authentication/identity

9
Leveraging Globalization and

Localization

When developing an application, it is important to think about multi-language support; a multilingual
application allows for a wider audience reach. This is also true for web APIs: messages returned by
endpoints (for example, validation errors) should be localized, and the service should be able to
handle different cultures and deal with time zones. In this chapter of the book, we will talk about
globalization and localization, and we will explain what features are available in minimal APIs to
work with these concepts. The information and samples that will be provided will guide us when
adding multi-language support to our services and correctly handling all the related behaviors so that
we will be able to develop global applications.

In this chapter, we will be covering the following topics:

•	 Introducing globalization and localization

•	 Localizing a minimal API application

•	 Using resource files

•	 Integrating localization in validation frameworks

•	 Adding UTC support to a globalized minimal API

Technical requirements
To follow the descriptions in this chapter, you will need to create an ASP.NET Core 6.0 Web API
application. Refer to the Technical requirements section in Chapter 1, Introduction to Minimal APIs,
for instructions on how to do so.

If you’re using your console, shell, or Bash terminal to create the API, remember to change your
working directory to the current chapter number (Chapter09).

Leveraging Globalization and Localization176

All the code samples in this chapter can be found in the GitHub repository for this book at https://
github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/
Chapter09.

Introducing globalization and localization
When thinking about internationalization, we must deal with globalization and localization, two terms
that seem to refer to the same concepts but actually involve different areas. Globalization is the task
of designing applications that can manage and support different cultures. Localization is the process
of adapting an application to a particular culture, for example, by providing translated resources for
each culture that will be supported.

Note
The terms internationalization, globalization, and localization are often abbreviated to I18N,
G11N, and L10N, respectively.

As with all the other features that we have already introduced in the previous chapters, globalization
and localization can be handled by the corresponding middleware and services that ASP.NET Core
provides and work in the same way in minimal APIs and controller-based projects.

You can find a great introduction to globalization and localization in the official documentation available
at https://docs.microsoft.com/dotnet/core/extensions/globalization
and https://docs.microsoft.com/dotnet/core/extensions/localization,
respectively. In the rest of the chapter, we will focus on how to add support for these features in a
minimal API project; in this way, we’ll introduce some important concepts and explain how to leverage
globalization and localization in ASP.NET Core.

Localizing a minimal API application
To enable localization within a minimal API application, let us go through the following steps:

1.	 The first step to making an application localizable is to specify the supported cultures by setting
the corresponding options, as follows:

var builder = WebApplication.CreateBuilder(args);

//...

var supportedCultures = new CultureInfo[] { new("en"),
new("it"), new("fr") };

builder.Services.
Configure<RequestLocalizationOptions>(options =>

https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter09
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter09
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter09
https://docs.microsoft.com/dotnet/core/extensions/globalization
https://docs.microsoft.com/dotnet/core/extensions/localization

Localizing a minimal API application 177

{

 options.SupportedCultures = supportedCultures;

 options.SupportedUICultures = supportedCultures;

 options.DefaultRequestCulture = new

 RequestCulture(supportedCultures.First());

});

In our example, we want to support three cultures – English, Italian, and French – so, we create
an array of CultureInfo objects.

We’re defining neutral cultures, that is, cultures that have a language but are not associated with a
country or region. We could also use specific cultures, such as en-US or en-GB, to represent the
cultures of a particular region: for example, en-US would refer to the English culture prevalent
in the United States, while en-GB would refer to the English culture prevalent in the United
Kingdom. This difference is important because, depending on the scenario, we may need to
use country-specific information to correctly implement localization. For example, if we want
to show a date, we have to know that the date format in the United States is M/d/yyyy, while
in the United Kingdom, it is dd/MM/yyyy. So, in this case, it becomes fundamental to work
with specific cultures. We also use specific cultures if we need to support language differences
across cultures. For example, a particular word may have different spellings depending on the
country (e.g., color in the US versus colour in the UK). That said, for our scenario of minimal
APIs, working with neutral cultures is just fine.

2.	 Next, we configure RequestLocalizationOptions, setting the cultures and specifying
the default one to use if no information about the culture is provided. We specify both the
supported cultures and the supported UI cultures:

	� The supported cultures control the output of culture-dependent functions, such as date,
time, and number format.

	� The supported UI cultures are used to choose which translated strings (from .resx files)
are searched for. We will talk about .resx files later in this chapter.

In a typical application, cultures and UI cultures are set to the same values, but of course, we
can use different options if needed.

3.	 Now that we have configured our service to support globalization, we need to add the localization
middleware to the ASP.NET Core pipeline so it will be able to automatically set the culture of
the request. Let us do so using the following code:

var app = builder.Build();

//...

app.UseRequestLocalization();

Leveraging Globalization and Localization178

//...

app.Run();

In the preceding code, with UseRequestLocalization() , we’re adding
RequestLocalizationMiddleware to the ASP.NET Core pipeline to set the current
culture of each request. This task is performed using a list of RequestCultureProvider
that can read information about the culture from various sources. Default providers comprise
the following:

	� QueryStringRequestCultureProvider: Searches for the culture and ui-culture
query string parameters

	� CookieRequestCultureProvider: Uses the ASP.NET Core cookie

	� AcceptLanguageHeaderRequestProvider: Reads the requested culture from the
Accept-Language HTTP header

For each request, the system will try to use these providers in this exact order, until it finds the
first one that can determine the culture. If the culture cannot be set, the one specified in the
DefaultRequestCulture property of RequestLocalizationOptions will be used.

If necessary, it is also possible to change the order of the request culture providers or even define a
custom provider to implement our own logic to determine the culture. More information on this
topic is available at https://docs.microsoft.com/aspnet/core/fundamentals/
localization#use-a-custom-provider.

Important note
The localization middleware must be inserted before any other middleware that might use the
request culture.

In the case of web APIs, whether using controller-based or minimal APIs, we usually set the request
culture through the Accept-Language HTTP header. In the following section, we will see how
to extend Swagger with the ability to add this header when trying to invoke methods.

https://docs.microsoft.com/aspnet/core/fundamentals/localization#use-a-custom-provider
https://docs.microsoft.com/aspnet/core/fundamentals/localization#use-a-custom-provider

Localizing a minimal API application 179

Adding globalization support to Swagger

We want Swagger to provide us with a way to specify the Accept-Language HTTP header for
each request so that we can test our globalized endpoints. Technically speaking, this means adding
an operation filter to Swagger that will be able to automatically insert the language header, using the
following code:

public class AcceptLanguageHeaderOperationFilter :
IOperationFilter

{

 private readonly List<IOpenApiAny>?

 supportedLanguages;

 public AcceptLanguageHeaderOperationFilter

 (IOptions<RequestLocalizationOptions>

 requestLocalizationOptions)

 {

 supportedLanguages =

 requestLocalizationOptions.Value.

 SupportedCultures?.Select(c =>

 newOpenApiString(c.TwoLetterISOLanguageName)).

 Cast<IOpenApiAny>(). ToList();

 }

 public void Apply(OpenApiOperation operation,

 OperationFilterContext context)

 {

 if (supportedLanguages?.Any() ?? false)

 {

 operation.Parameters ??= new

 List<OpenApiParameter>();

 operation.Parameters.Add(new

 OpenApiParameter

 {

 Name = HeaderNames.AcceptLanguage,

 In = ParameterLocation.Header,

Leveraging Globalization and Localization180

 Required = false,

 Schema = new OpenApiSchema

 {

 Type = "string",

 Enum = supportedLanguages,

 Default = supportedLanguages.

 First()

 }

 });

 }

 }

}

In the preceding code, AcceptLanguageHeaderOperationFilter takes the
RequestLocalizationOptions object via dependency injection that we have defined at startup
and extracts the supported languages in the format that Swagger expects from it. Then, in the Apply()
method, we add a new OpenApiParameter that corresponds to the Accept-Language header.
In particular, with the Schema.Enum property, we provide the list of supported languages using the
values we have extracted in the constructor. This method is invoked for every operation (that is, every
endpoint), meaning that the parameter will be automatically added to each of them.

Now, we need to add the new filter to Swagger:

var builder = WebApplication.CreateBuilder(args);

//...

builder.Services.AddSwaggerGen(options =>

{

 options.OperationFilter<AcceptLanguageHeaderOperation

 Filter>();

});

As we did with the preceding code, for every operation, Swagger will execute the filter, which in turn
will add a parameter to specify the language of the request.

So, let’s suppose we have the following endpoint:

app.MapGet("/culture", () => Thread.CurrentThread.
CurrentCulture.DisplayName);

Localizing a minimal API application 181

In the preceding handler, we just return the culture of the thread. This method takes no parameter;
however, after adding the preceding filter, the Swagger UI will show the following:

Figure 9.1 – The Accept-Language header added to Swagger

The operation filter has added a new parameter to the endpoint, allowing us to select the language
from a dropdown. We can click the Try it out button to choose a value from the list and then click
Execute to invoke the endpoint:

Figure 9.2 – The result of the execution with the Accept-Language HTTP header

Leveraging Globalization and Localization182

This is the result of selecting it as a language request: Swagger has added the Accept-Language
HTTP header, which, in turn, has been used by ASP.NET Core to set the current culture. Then, in
the end, we get and return the culture display name in the route handler.

This example shows us that we have correctly added globalization support to our minimal API. In the
next section, we’ll go further and work with localization, starting by providing translated resources
to callers based on the corresponding languages.

Using resource files
Our minimal API now supports globalization, so it can switch cultures based on the request. This
means that we can provide localized messages to callers, for example, when communicating validation
errors. This feature is based on the so-called resource files (.resx), a particular kind of XML file
that contains key-value string pairs representing messages that must be localized.

Note
These resource files are exactly the same as they have been since the early versions of .NET.

Creating and working with resource files

With resource files, we can easily separate strings from code and group them by culture. Typically,
resource files are put in a folder called Resources. To create a file of this kind using Visual Studio,
let us go through the following steps:

Important note
Unfortunately, Visual Studio Code does not provide support for handling .resx files. More
information about this topic is available at https://github.com/dotnet/AspNetCore.
Docs/issues/2501.

1.	 Right-click on the folder in Solution Explorer and then choose Add | New Item.

2.	 In the Add New Item dialog window, search for Resources, select the corresponding template,
and name the file, for example, Messages.resx:

https://github.com/dotnet/AspNetCore.Docs/issues/2501
https://github.com/dotnet/AspNetCore.Docs/issues/2501

Using resource files 183

Figure 9.3 – Adding a resource file to the project

The new file will immediately open in the Visual Studio editor.

3.	 The first thing to do in the new file is to select Internal or Public (based on the code visibility
we want to achieve) from the Access Modifier option so that Visual Studio will create a C# file
that exposes the properties to access the resources:

Figure 9.4 – Changing the Access Modifier of the resource file

As soon as we change this value, Visual Studio will add a Messages.Designer.cs file
to the project and automatically create properties that correspond to the strings we insert in
the resource file.

Leveraging Globalization and Localization184

Resource files must follow a precise naming convention. The file that contains default culture
messages can have any name (such as Messages.resx, as in our example), but the other
.resx files that provide the corresponding translations must have the same name, with the
specification of the culture (neutral or specific) to which they refer. So, we have Messages.
resx, which will store default (English) messages.

4.	 Since we also want to localize our messages in Italian, we need to create another file with the
name Messages.it.resx.

Note
We don’t create a resource file for French culture on purpose because this way, we’ll see how
APS.NET Core looks up the localized messages in practice.

5.	 Now, we can start experimenting with resource files. Let’s open the Messages.resx file and
set Name to HelloWorld and Value to Hello World!.

In this way, Visual Studio will add a static HelloWorld property in the Messages autogenerated
class that allows us to access values based on the current culture.

6.	 To demonstrate this behavior, also open the Messages.it.resx file and add an item with
the same Name, HelloWorld, but now set Value to the translation Ciao mondo!.

7.	 Finally, we can add a new endpoint to showcase the usage of the resource files:

// using Chapter09.Resources;

app.MapGet("/helloworld", () => Messages.HelloWorld);

In the preceding route handler, we simply access the static Mesasges.HelloWorld property
that, as discussed before, has been automatically created while editing the Messages.resx file.

If we now run the minimal API and try to execute this endpoint, we’ll get the following responses
based on the request language that we select in Swagger:

Table 9.1 – Responses based on the request language

Using resource files 185

When accessing a property such as HelloWorld, the autogenerated Messages class internally uses
ResourceManager to look up the corresponding localized string. First of all, it looks for a resource
file whose name contains the requested culture. If it is not found, it reverts to the parent culture of
that culture. This means that, if the requested culture is specific, ResourceManager searches for
the neutral culture. If no resource file is still found, then the default one is used.

In our case, using Swagger, we can select only English, Italian, or French as a neutral culture. But what
happens if a client sends other values? We can have situations such as the following:

•	 The request culture is it-IT: the system searches for Messages.it-IT.resx and then
finds and uses Messages.it.resx.

•	 The request culture is fr-FR: the system searches for Messages.fr-FR.resx, then
Messages.fr.resx, and (because neither are available) finally uses the default, Messages.
resx.

•	 The request culture is de (German): because this isn’t a supported culture at all, the default
request culture will be automatically selected, so strings will be searched for in the Messages.
resx file.

Note
If a localized resource file exists, but it doesn’t contain the specified key, then the value of the
default file will be used.

Formatting localized messages using resource files

We can also use resource files to format localized messages. For example, we can add the following
strings to the resource files of the project:

Table 9.2 – A custom localized message

Now, let’s define this endpoint:

// using Chapter09.Resources;

app.MapGet("/hello", (string name) =>

{

 var message = string.Format(Messages.GreetingMessage,

 name);

Leveraging Globalization and Localization186

 return message;

});

As in the preceding code example, we get a string from a resource file according to the culture of
the request. But, in this case, the message contains a placeholder, so we can use it to create a custom
localized message using the name that is passed to the route handler. If we try to execute the endpoint,
we will get results such as these:

Table 9.3 – Responses with custom localized messages based on the request language

The possibility to create localized messages with placeholders that are replaced at runtime using
different values is a key point for creating truly localizable services.

In the beginning, we said that a typical use case of localization in web APIs is when we need to provide
localized error messages upon validation. In the next section, we’ll see how to add this feature to our
minimal API.

Integrating localization in validation frameworks
In Chapter 6, Exploring Validation and Mapping, we talked about how to integrate validation
into a minimal API project. We learned how to use the MiniValidation library, rather than
FluentValidation, to validate our models and provide validation messages to the callers. We
also said that FluentValidation already provides translations for standard error messages.

However, with both libraries, we can leverage the localization support we have just added to our
project to support localized and custom validation messages.

Localizing validation messages with MiniValidation

Using the MiniValidation library, we can use validation based on Data Annotations with
minimal APIs. Refer to Chapter 6, Exploring Validation and Mapping, for instructions on how to add
this library to the project.

Then, recreate the same Person class:

public class Person

{

 [Required]

Integrating localization in validation frameworks 187

 [MaxLength(30)]

 public string FirstName { get; set; }

 [Required]

 [MaxLength(30)]

 public string LastName { get; set; }

 [EmailAddress]

 [StringLength(100, MinimumLength = 6)]

 public string Email { get; set; }

}

Every validation attribute allows us to specify an error message, which can be a static string or a
reference to a resource file. Let’s see how to correctly handle the localization for the Required
attribute. Add the following values in resource files:

Table 9.4 – Localized validation error messages used by Data Annotations

We want it so that when a required validation rule fails, the localized message that corresponds to
FieldRequiredAnnotation is returned. Moreover, this message contains a placeholder, because
we want to use it for every required field, so we also need the translation of property names.

With these resources, we can update the Person class with the following declarations:

public class Person

{

 [Display(Name = "FirstName", ResourceType =

 typeof(Messages))]

 [Required(ErrorMessageResourceName =

 "FieldRequiredAnnotation",

 ErrorMessageResourceType = typeof(Messages))]

Leveraging Globalization and Localization188

 public string FirstName { get; set; }

 //...

}

Each validation attribute, such as Required (as used in this example), exposes properties that allow
us to specify the name of the resource to use and the type of class that contains the corresponding
definition. Keep in mind that the name is a simple string, with no check at compile time, so if we write
an incorrect value, we’ll only get an error at runtime.

Next, we can use the Display attribute to also specify the name of the field that must be inserted
in the validation message.

Note
You can find the complete declaration of the Person class with localized data annotations
on the GitHub repository at https://github.com/PacktPublishing/Minimal-
APIs-in-ASP.NET-Core-6/blob/main/Chapter09/Program.cs#L97.

Now we can re-add the validation code shown in Chapter 6, Exploring Validation and Mapping. The
difference is that now the validation messages will be localized:

app.MapPost("/people", (Person person) =>

{

 var isValid = MiniValidator.TryValidate(person, out

 var errors);

 if (!isValid)

 {

 return Results.ValidationProblem(errors, title:

 Messages.ValidationErrors);

 }

 return Results.NoContent();

});

In the preceding code, the messages contained in the errors dictionary that is returned by the
MiniValidator.TryValidate() method will be localized according to the request culture,
as described in the previous sections. We also specify the title parameter in the Results.
ValidationProblem() invocation because we want to localize this value too (otherwise, it will
always be the default One or more validation errors occurred).

Integrating localization in validation frameworks 189

If instead of data annotations, we prefer using FluentValidation, we know that it supports
localization of standard error messages by default from Chapter 6, Exploring Validation and Mapping.
However, with this library, we can also provide our translations. In the next section, we’ll talk about
implementing this solution.

Localizing validation messages with FluentValidation

With FluentValidation, we can totally decouple the validation rules from our models. As said
before, refer to Chapter 6, Exploring Validation and Mapping, for instructions on how to add this
library to the project and how to configure it.

Next, let us recreate the PersonValidator class:

public class PersonValidator : AbstractValidator<Person>

{

 public PersonValidator()

 {

 RuleFor(p => p.FirstName).NotEmpty().

 MaximumLength(30);

 RuleFor(p => p.LastName).NotEmpty().

 MaximumLength(30);

 RuleFor(p => p.Email).EmailAddress().Length(6,

 100);

 }

}

In the case that we haven’t specified any messages, the default ones will be used. Let’s add the following
resource to customize the NotEmpty validation rule:

Table 9.5 – The localized validation error messages used by FluentValidation

Note that, in this case, we also have a placeholder that will be replaced by the property name. However,
different from data annotations, FluentValidation uses a placeholder with a name to better
identify its meaning.

Leveraging Globalization and Localization190

Now, we can add this message in the validator, for example, for the FirstName property:

RuleFor(p => p.FirstName).NotEmpty().

 WithMessage(Messages.NotEmptyMessage).

 WithName(Messages.FirstName);

We use WithMessage() to specify the message that must be used when the preceding rule fails,
following which we add the WithName() invocation to overwrite the default property name used
for the {PropertyName} placeholder of the message.

Note
You can find the complete implementation of the PersonValidator class with localized
messages in the GitHub repository at https://github.com/PacktPublishing/
Minimal-APIs-in-ASP.NET-Core-6/blob/main/Chapter09/Program.
cs#L129.

Finally, we can leverage the localized validator in our endpoint, as we did in Chapter 6, Exploring
Validation and Mapping:

app.MapPost("/people", async (Person person, IValidator<Person>
validator) =>

{

 var validationResult = await validator.

 ValidateAsync(person);

 if (!validationResult.IsValid)

 {

 var errors = validationResult.ToDictionary();

 return Results.ValidationProblem(errors, title:

 Messages.ValidationErrors);

 }

 return Results.NoContent();

});

As in the case of data annotations, the validationResult variable will contain localized error
messages that we return to the caller using the Results.ValidationProblem() method
(again, with the definition of the title property).

Adding UTC support to a globalized minimal API 191

Tip
In our example, we have seen how to explicitly assign translations for each property using the
WithMessage() method. FluentValidation also provides a way to replace all (or
some) of its default messages. You can find more information in the official documentation
at https://docs.fluentvalidation.net/en/latest/localization.
html#default-messages.

This ends our overview of localization using resource files. Next, we’ll talk about an important topic
when dealing with services that are meant to be used worldwide: the correct handling of different
time zones.

Adding UTC support to a globalized minimal API
So far, we have added globalization and localization support to our minimal API because we want it to
be used by the widest audience possible, irrespective of culture. But, if we think about being accessible
to a worldwide audience, we should consider several aspects related to globalization. Globalization does
not only pertain to language support; there are important factors we need to consider, for example,
geographic locations, as well as time zones.

So, for example, we can have our minimal API running in Italy, which follows Central European Time
(CET) (GMT+1), while our clients can use browsers that execute a single-page application, rather
than mobile apps, all over the world. We could also have a database server that contains our data,
and this could be in another time zone. Moreover, at a certain point, it may be necessary to provide
better support for worldwide users, so we’ll have to move our service to another location, which could
have a new time zone. In conclusion, our system could deal with data in different time zones, and,
potentially, the same services could switch time zones during their lives.

In these situations, the ideal solution is working with DateTimeOffset, a data type that includes
time zones and that JsonSerializer fully supports, preserving time zone information during
serialization and deserialization. If we could always use it, we’d automatically solve any problem
related to globalization, because converting a DateTimeOffset value to a different time zone is
straightforward. However, there are cases in which we can’t handle the DateTimeOffset type,
for example:

•	 When we’re working on a legacy system that relies on DateTime everywhere, updating the
code to use DateTimeOffset isn’t an option because it requires too many changes and
breaks the compatibility with the old data.

•	 We have a database server such as MySQL that doesn’t have a column type for storing
DateTimeOffset directly, so handling it requires extra effort, for example, using two
separate columns, increasing the complexity of the domain.

•	 In some cases, we simply aren’t interested in sending, receiving, and saving time zones – we
just want to handle time in a “universal” way.

https://docs.fluentvalidation.net/en/latest/localization.html#default-messages
https://docs.fluentvalidation.net/en/latest/localization.html#default-messages

Leveraging Globalization and Localization192

So, in all the scenarios where we can’t or don’t want to use the DateTimeOffset data type, one of
the best and simplest ways to deal with different time zones is to handle all dates using Coordinated
Universal Time (UTC): the service must assume that the dates it receives are in the UTC format and,
on the other hand, all the dates returned by the API must be in UTC.

Of course, we must handle this behavior in a centralized way; we don’t want to have to remember to
apply the conversion to and from the UTC format every time we receive or send a date. The well-known
JSON.NET library provides an option to specify how to treat the time value when working with a
DateTime property, allowing it to automatically handle all dates as UTC and convert them to that
format if they represent a local time. However, the current version of Microsoft JsonSerializer
used in minimal APIs doesn’t include such a feature. From Chapter 2, Exploring Minimal APIs and
Their Advantages, we know that we cannot change the default JSON serializer in minimal APIs, but
we can overcome this lack of UTC support by creating a simple JsonConverter:

public class UtcDateTimeConverter : JsonConverter<DateTime>

{

 public override DateTime Read(ref Utf8JsonReader

 reader, Type typeToConvert, JsonSerializerOptions

 options)

 => reader.GetDateTime().ToUniversalTime();

 public override void Write(Utf8JsonWriter writer,

 DateTime value, JsonSerializerOptions options)

 => writer.WriteStringValue((value.Kind ==

 DateTimeKind.Local ? value.ToUniversalTime() : value)

 .ToString("yyyy'-'MM'-'dd'T'HH':'mm':'ss'.'

 fffffff'Z'"));

}

With this converter, we tell JsonSerializer how to treat DateTime properties:

•	 When DateTime is read from JSON, the value is converted to UTC using the
ToUniversalTime() method.

•	 When DateTime must be written to JSON, if it represents a local time (DateTimeKind.
Local), it is converted to UTC before serialization – then, it is serialized using the Z suffix,
which indicates that the time is UTC.

Adding UTC support to a globalized minimal API 193

Now, before using this converter, let’s add the following endpoint definition:

app.MapPost("/date", (DateInput date) =>

{

 return Results.Ok(new

 {

 Input = date.Value,

 DateKind = date.Value.Kind.ToString(),

 ServerDate = DateTime.Now

 });

});

public record DateInput(DateTime Value);

Let’s try to call it, for example, with a date formatted as 2022-03-06T16:42:37-05:00. We’ll
obtain something similar to the following:

{

 "input": "2022-03-06T22:42:37+01:00",

 "dateKind": "Local",

 "serverDate": "2022-03-07T18:33:17.0288535+01:00"

}

The input date, containing a time zone, has automatically been converted to the local time of the server
(in this case, the server is running in Italy, as stated at the beginning), as also demonstrated by the
dateKind field. Moreover, serverDate contains a date that is relative to the server time zone.

Now, let’s add UtcDateTimeConverter to JsonSerializer:

var builder = WebApplication.CreateBuilder(args);

//...

builder.Services.Configure<Microsoft.AspNetCore.Http.Json.

JsonOptions>(options =>

{

 options.SerializerOptions.Converters.Add(new

 UtcDateTimeConverter());

});

Leveraging Globalization and Localization194

With this configuration, every DateTime property will be processed using our custom converters.
Now, execute the endpoint again, using the same input as before. This time, the result will be as follows:

{

 "input": "2022-03-06T21:42:37.0000000Z",

 "dateKind": "Utc",

 "serverDate": "2022-03-06T17:40:08.1472051Z"

}

The input is the same, but our UtcDateTimeConverter has now converted the date to UTC
and, on the other hand, has serialized the server date as UTC; now, our API, in a centralized way,
can automatically handle all dates as UTC, no matter its time zone or the time zones of the callers.

Finally, there are two other points to make all the systems correctly work with UTC:

•	 When we need to retrieve the current date in the code, we always have to use DateTime.
UtcNow instead of DateTime.Now

•	 Client applications must know that they will receive the date in UTC format and act accordingly,
for example, invoking the ToLocalTime() method

In this way, the minimal API is truly globalized and can work with any time zone; without having to
worry about explicit conversion, all times input or output will be always in UTC, so it will be much
easier to handle them.

Summary
Developing minimal APIs with globalization and localization support in mind is fundamental in an
interconnected world. ASP.NET Core includes all the features needed to create services that can react to
the culture of the user and provide translations based on the request language: the usage of localization
middleware, resource files, and custom validation messages allows the creation of services that can
support virtually every culture. We have also talked about the globalization-related problems that
could arise when working with different time zones and shown how to solve it using the centralized
UTC date time format so that our APIs can seamlessly work irrespective of the geographic location
and time zone of clients.

In Chapter 10, Evaluating and Benchmarking the Performance of Minimal APIs, we will talk about
why minimal APIs were created and analyze the performance benefits of using minimal APIs over
the classic controller-based approach.

10
Evaluating and Benchmarking

the Performance of
Minimal APIs

The purpose of this chapter is to understand one of the motivations for which the minimal APIs
framework was created.

This chapter will provide some obvious data and examples of how you can measure the performance
of an ASP.NET 6 application using the traditional approach as well as how you can measure the
performance of an ASP.NET application using the minimal API approach.

Performance is key to any functioning application; however, very often it takes a back seat.

A performant and scalable application depends not only on our code but also on the development
stack. Today, we have moved on from the .NET full framework and .NET Core to .NET and can start
to appreciate the performance that the new .NET has achieved, version after version – not only with
the introduction of new features and the clarity of the framework but also primarily because the
framework has been completely rewritten and improved with many features that have made it fast
and very competitive compared to other languages.

In this chapter, we will evaluate the performance of the minimal API by comparing its code with
identical code that has been developed traditionally. We’ll understand how to evaluate the performance
of a web application, taking advantage of the BenchmarkDotNet framework, which can be useful in
other application scenarios.

With minimal APIs, we have a new simplified framework that helps improve performance by leaving
out some components that we take for granted with ASP.NET.

Evaluating and Benchmarking the Performance of Minimal APIs196

The themes we will touch on in this chapter are as follows:

•	 Improvements with minimal APIs

•	 Exploring performance with load tests

•	 Benchmarking minimal APIs with BenchmarkDotNet

Technical requirements
Many systems can help us test the performance of a framework.

We can measure how many requests per second one application can handle compared to another,
assuming equal application load. In this case, we are talking about load testing.

To put the minimal APIs on the test bench, we need to install k6, the framework we will use for
conducting our tests.

We will launch load testing on a Windows machine with only .NET applications running.

To install k6, you can do either one of the following:

•	 If you’re using the Chocolatey package manager (https://chocolatey.org/), you can
install the unofficial k6 package with the following command:

choco install k6

•	 If you’re using Windows Package Manager (https://github.com/microsoft/winget-
cli), you can install the official package from the k6 manifests with this command:

winget install k6

•	 You can also test your application published on the internet with Docker:

docker pull loadimpact/k6

•	 Or as we did, we installed k6 on the Windows machine and launched everything from
the command line. You can download k6 from this link: https://dl.k6.io/msi/
k6-latest-amd64.msi.

In the final part of the chapter, we’ll measure the duration of the HTTP method for making calls to
the API.

https://chocolatey.org/
https://github.com/microsoft/winget-cli
https://github.com/microsoft/winget-cli
https://dl.k6.io/msi/k6-latest-amd64.msi
https://dl.k6.io/msi/k6-latest-amd64.msi

Improvements with minimal APIs 197

We’ll stand at the end of the system as if the API were a black box and measure the reaction time.
BenchmarkDotNet is the tool we’ll be using – to include it in our project, we need to reference its
NuGet package:

dotnet add package BenchmarkDotNet

All the code samples in this chapter can be found in the GitHub repository for this book at the
following link:

https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/
tree/main/Chapter10

Improvements with minimal APIs
Minimal APIs were designed not only to improve the performance of APIs but also for better code
convenience and similarity to other languages to bring developers from other platforms closer.
Performance has increased both from the point of view of the .NET framework, as each version has
incredible improvements, as well as from the point of view of the simplification of the application
pipeline. Let’s see in detail what has not been ported and what improves the performance of this
framework.

The minimal APIs execution pipeline omits the following features, which makes the framework lighter:

•	 Filters, such as IAsyncAuthorizationFilter, IAsyncActionFilter,
IAsyncExceptionFilter, IAsyncResultFilter, and IasyncResourceFilter

•	 Model binding

•	 Binding for forms, such as IFormFile

•	 Built-in validation

•	 Formatters

•	 Content negotiations

•	 Some middleware

•	 View rendering

•	 JsonPatch

•	 OData

•	 API versioning

https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter10
https://github.com/PacktPublishing/Minimal-APIs-in-ASP.NET-Core-6/tree/main/Chapter10

Evaluating and Benchmarking the Performance of Minimal APIs198

Performance Improvements in .NET 6
Version after version, .NET improves its performance. In the latest version of the framework,
improvements made over previous versions have been reported. Here’s where you can find a
complete summary of what’s new in .NET 6:

https://devblogs.microsoft.com/dotnet/performance-improvements-
in-net-6/

Exploring performance with load tests
How to estimate the performance of minimal APIs? There are many points of view to consider and
in this chapter, we will try to address them from the point of view of the load they can support. We
decided to adopt a tool – k6 – that performs load tests on a web application and tells us how many
requests per second can a minimal API handle.

As described by its creators, k6 is an open source load testing tool that makes performance testing
easy and productive for engineering teams. The tool is free, developer-centric, and extensible. Using
k6, you can test the reliability and performance of your systems and catch performance regressions
and problems earlier. This tool will help you to build resilient and performant applications that scale.

In our case, we would like to use the tool for performance evaluation and not for load testing. Many
parameters should be considered during load testing, but we will only focus on the http_reqs
index, which indicates how many requests have been handled correctly by the system.

We agree with the creators of k6 about the purpose of our test, namely performance and synthetic
monitoring.

Use cases

k6 users are typically developers, QA engineers, SDETs, and SREs. They use k6 for testing the performance
and reliability of APIs, microservices, and websites. Common k6 use cases include the following:

•	 Load testing: k6 is optimized for minimal resource consumption and designed for running
high load tests (spike, stress, and soak tests).

•	 Performance and synthetic monitoring: With k6, you can run tests with a small load to
continuously validate the performance and availability of your production environment.

•	 Chaos and reliability testing: k6 provides an extensible architecture. You can use k6 to simulate
traffic as part of your chaos experiments or trigger them from your k6 tests.

https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-6/
https://devblogs.microsoft.com/dotnet/performance-improvements-in-net-6/

Exploring performance with load tests 199

However, we have to make several assumptions if we want to evaluate the application from the point
of view just described. When a load test is performed, it is usually much more complex than the ones
we will perform in this section. When an application is bombarded with requests, not all of them will
be successful. We can say that the test passed successfully if a very small percentage of the responses
failed. In particular, we usually consider 95 or 98 percentiles of outcomes as the statistic on which to
derive the test numbers.

With this background, we can perform stepwise load testing as follows: in ramp up, the system will
be concerned with running the virtual user (VU) load from 0 to 50 for about 15 seconds. Then, we
will keep the number of users stable for 60 seconds, and finally, ramp down the load to zero virtual
users for another 15 seconds.

Each newly written stage of the test is expressed in the JavaScript file in the stages section. Testing is
therefore conducted under a simple empirical evaluation.

First, we create three types of responses, both for the ASP.NET Web API and minimal API:

•	 Plain-text.

•	 Very small JSON data against a call – the data is static and always the same.

•	 In the third response, we send JSON data with an HTTP POST method to the API. For the
Web API, we check the validation of the object, and for the minimal API, since there is no
validation, we return the object as received.

The following code will be used to compare the performance between the minimal API and the
traditional approach:

Minimal API

app.MapGet("text-plain",() => Results.Content("response"))

.WithName("GetTextPlain");

app.MapPost("validations",(ValidationData validation) =>
Results.Ok(validation)).WithName("PostValidationData");

app.MapGet("jsons", () =>

 {

 var response = new[]

 {

 new PersonData { Name = "Andrea", Surname =

 "Tosato", BirthDate = new DateTime

 (2022, 01, 01) },

Evaluating and Benchmarking the Performance of Minimal APIs200

 new PersonData { Name = "Emanuele",

 Surname = "Bartolesi", BirthDate = new

 DateTime(2022, 01, 01) },

 new PersonData { Name = "Marco", Surname =

 "Minerva", BirthDate = new DateTime

 (2022, 01, 01) }

 };

 return Results.Ok(response);

 })

.WithName("GetJsonData");

Traditional Approach

For the traditional approach, three distinct controllers have been designed as shown here:

[Route("text-plain")]

 [ApiController]

 public class TextPlainController : ControllerBase

 {

 [HttpGet]

 public IActionResult Get()

 {

 return Content("response");

 }

 }

[Route("validations")]

 [ApiController]

 public class ValidationsController : ControllerBase

 {

 [HttpPost]

 public IActionResult Post(ValidationData data)

 {

 return Ok(data);

 }

 }

 public class ValidationData

Exploring performance with load tests 201

 {

 [Required]

 public int Id { get; set; }

 [Required]

 [StringLength(100)]

 public string Description { get; set; }

 }

[Route("jsons")]

[ApiController]

public class JsonsController : ControllerBase

{

 [HttpGet]

 public IActionResult Get()

 {

 var response = new[]

 {

 new PersonData { Name = "Andrea", Surname =

 "Tosato", BirthDate = new

 DateTime(2022, 01, 01) },

 new PersonData { Name = "Emanuele", Surname =

 "Bartolesi", BirthDate = new

 DateTime(2022, 01, 01) },

 new PersonData { Name = "Marco", Surname =

 "Minerva", BirthDate = new

 DateTime(2022, 01, 01) }

 };

 return Ok(response);

 }

}

 public class PersonData

 {

 public string Name { get; set; }

 public string Surname { get; set; }

Evaluating and Benchmarking the Performance of Minimal APIs202

 public DateTime BirthDate { get; set; }

 }

In the next section, we will define an options object, where we are going to define the execution
ramp described here. We define all clauses to consider the test satisfied. As the last step, we write the
real test, which does nothing but call the HTTP endpoint using GET or POST, depending on the test.

Writing k6 tests

Let’s create a test for each case scenario that we described in the previous section:

import http from "k6/http";

import { check } from "k6";

export let options = {

 summaryTrendStats: ["avg", "p(95)"],

 stages: [

 // Linearly ramp up from 1 to 50 VUs during 10

 seconds

    { target: 50, duration: "10s" },

 // Hold at 50 VUs for the next 1 minute

    { target: 50, duration: "1m" },

 // Linearly ramp down from 50 to 0 VUs over the

 last 15 seconds

    { target: 0, duration: "15s" }

],

 thresholds: {

 // We want the 95th percentile of all HTTP

 request durations to be less than 500ms

    "http_req_duration": ["p(95)<500"],

 // Thresholds based on the custom metric we

 defined and use to track application failures

    "check_failure_rate": [

 // Global failure rate should be less than 1%

 "rate<0.01",

 // Abort the test early if it climbs over 5%

 { threshold: "rate<=0.05", abortOnFail: true },

],

Exploring performance with load tests 203

 },

};

export default function () {

 // execute http get call

 let response = http.get("http://localhost:7060/jsons");

 // check() returns false if any of the specified

 conditions fail

 check(response, {

 "status is 200": (r) => r.status === 200,

 });

}

In the preceding JavaScript file, we wrote the test using k6 syntax. We have defined the options, such
as the evaluation threshold of the test, the parameters to be measured, and the stages that the test
should simulate. Once we have defined the options of the test, we just have to write the code to call
the APIs that interest us – in our case, we have defined three tests to call the three endpoints that we
want to evaluate.

Running a k6 performance test

Now that we have written the code to test the performance, let’s run the test and generate the statistics
of the tests.

We will report all the general statistics of the collected tests:

1.	 First, we need to start the web applications to run the load test. Let’s start with both the
ASP.NET Web API application and the minimal API application. We expose the URLs, both
the HTTPS and HTTP protocols.

2.	 Move the shell to the root folder and run the following two commands in two different shells:

dotnet .\MinimalAPI.Sample\bin\Release\net6.0\MinimalAPI.
Sample.dll --urls=https://localhost:7059/;http://
localhost:7060/

dotnet .\ControllerAPI.Sample\bin\Release\
net6.0\ControllerAPI.Sample.dll --urls="https://
localhost:7149/;http://localhost:7150/"

Evaluating and Benchmarking the Performance of Minimal APIs204

3.	 Now, we just have to run the three test files for each project.

	� This one is for the controller-based Web API:

k6 run .\K6\Controllers\json.js --summary-export=.\K6\
results\controller-json.json

	� This one is for the minimal API:

k6 run .\K6\Minimal\json.js --summary-export=.\K6\
results\minimal-json.json

Here are the results.

For the test in traditional development mode with a plain-text content type, the number of
requests served per second is 1,547:

Figure 10.1 – The load test for a controller-based API and plain text

Exploring performance with load tests 205

For the test in traditional development mode with a json content type, the number of requests
served per second is 1,614:

Figure 10.2 – The load test for a controller-based API and JSON result

Evaluating and Benchmarking the Performance of Minimal APIs206

For the test in traditional development mode with a json content type and model validation, the
number of requests served per second is 1,602:

Figure 10.3 – The load test for a controller-based API and validation payload

Exploring performance with load tests 207

For the test in minimal API development mode with a plain-text content type, the number of
requests served per second is 2,285:

Figure 10.4 – The load test for a minimal API and plain text

Evaluating and Benchmarking the Performance of Minimal APIs208

For the test in minimal API development mode with a json content type, the number of requests
served per second is 2,030:

Figure 10.5 – The load test for a minimal API and JSON result

Exploring performance with load tests 209

For the test in minimal API development mode with a json content type with model validation, the
number of requests served per second is 2,070:

Figure 10.6 – The load test for a minimal API and no validation payload

Evaluating and Benchmarking the Performance of Minimal APIs210

In the following image, we show a comparison of the three tested functionalities, reporting the number
of requests served with the same functionality:

Figure 10.7 – The performance results

As we might have expected, minimal APIs are much faster than controller-based web APIs.

The difference is approximately 30%, and that’s no small feat.

Obviously, as previously mentioned, minimal APIs have features missing in order to optimize
performance, the most striking being data validation.

In the example, the payload is very small, and the differences are not very noticeable.

As the payload and validation rules grow, the difference in speed between the two frameworks will
only increase.

We have seen how to measure performance with a load testing tool and then evaluate how many
requests it can serve per second with the same number of machines and users connected.

We can also use other tools to understand how minimal APIs have had a strong positive impact on
performance.

Benchmarking minimal APIs with BenchmarkDotNet
BenchmarkDotNet is a framework that allows you to measure written code and compare performance
between libraries written in different versions or compiled with different .NET frameworks.

This tool is used for calculating the time taken for the execution of a task, the memory used, and
many other parameters.

Our case is a very simple scenario. We want to compare the response times of two applications written
to the same version of the .NET Framework.

Benchmarking minimal APIs with BenchmarkDotNet 211

How do we perform this comparison? We take an HttpClient object and start calling the methods
that we have also defined for the load testing case.

We will therefore obtain a comparison between two methods that exploit the same HttpClient
object and recall methods with the same functionality, but one is written with the ASP.NET Web API
and the traditional controllers, while the other is written using minimal APIs.

BenchmarkDotNet helps you to transform methods into benchmarks, track their performance, and
share reproducible measurement experiments.

Under the hood, it performs a lot of magic that guarantees reliable and precise results thanks to the
perfolizer statistical engine. BenchmarkDotNet protects you from popular benchmarking mistakes
and warns you if something is wrong with your benchmark design or obtained measurements. The
library has been adopted by over 6,800 projects, including .NET Runtime, and is supported by the
.NET Foundation (https://benchmarkdotnet.org/).

Running BenchmarkDotNet

We will write a class that represents all the methods for calling the APIs of the two web applications.
Let’s make the most of the startup feature and prepare the objects we will send via POST. The function
marked as [GlobalSetup] is not computed during runtime, and this helps us calculate exactly
how long it takes between the call and the response from the web application:

1.	 Register all the classes in Program.cs that implement BenchmarkDotNet:

BenchmarkSwitcher.FromAssembly(typeof(Program).Assembly).
Run(args);

In the preceding snippet, we have registered the current assembly that implements all the functions
that will be needed to be evaluated in the performance calculation. The methods marked with
[Benchmark] will be executed over and over again to establish the average execution time.

2.	 The application must be compiled on release and possibly within the production environment:

namespace DotNetBenchmarkRunners

{

 [SimpleJob(RuntimeMoniker.Net60, baseline: true)]

 [JsonExporter]

 public class Performances

 {

 private readonly HttpClient clientMinimal =

 new HttpClient();

 private readonly HttpClient

 clientControllers = new HttpClient();

https://benchmarkdotnet.org/

Evaluating and Benchmarking the Performance of Minimal APIs212

 private readonly ValidationData data = new

 ValidationData()

 {

 Id = 1,

 Description = "Performance"

 };

 [GlobalSetup]

 public void Setup()

 {

 clientMinimal.BaseAddress = new

 Uri("https://localhost:7059");

 clientControllers.BaseAddress = new

 Uri("https://localhost:7149");

 }

 [Benchmark]

 public async Task Minimal_Json_Get() =>

 await clientMinimal.GetAsync("/jsons");

 [Benchmark]

 public async Task Controller_Json_Get() =>

 await clientControllers.GetAsync("/jsons");

 [Benchmark]

 public async Task Minimal_TextPlain_Get()

 => await clientMinimal.

 GetAsync("/text-plain");

 [Benchmark]

 public async Task

 Controller_TextPlain_Get() => await

 clientControllers.GetAsync("/text-plain");

 [Benchmark]

 public async Task Minimal_Validation_Post()

Benchmarking minimal APIs with BenchmarkDotNet 213

 => await clientMinimal.

 PostAsJsonAsync("/validations", data);

 [Benchmark]

 public async Task

 Controller_Validation_Post() => await

 clientControllers.

 PostAsJsonAsync("/validations", data);

 }

 public class ValidationData

 {

 public int Id { get; set; }

 public string Description { get; set; }

 }

}

3.	 Before launching the benchmark application, launch the web applications:

Minimal API application

dotnet .\MinimalAPI.Sample\bin\Release\net6.0\MinimalAPI.
Sample.dll --urls="https://localhost:7059/;http://
localhost:7060/"

Controller-based application

dotnet .\ControllerAPI.Sample\bin\Release\
net6.0\ControllerAPI.Sample.dll --urls=https://
localhost:7149/;http://localhost:7150/

By launching these applications, various steps will be performed and a summary report will
be extracted with the timelines that we report here:

dotnet .\DotNetBenchmarkRunners\bin\Release\net6.0\
DotNetBenchmarkRunners.dll --filter *

Evaluating and Benchmarking the Performance of Minimal APIs214

For each method performed, the average value or the average execution time is reported.

Table 10.1 – Benchmark HTTP requests for minimal APIs and controllers

In the following table, Error denotes how much the average value may vary due to a measurement
error. Finally, the standard deviation (StdDev) indicates the deviation from the mean value. The times
are given in μs and are therefore very small to measure empirically if not with instruments with that
just exposed.

Summary
In the chapter, we compared the performance of minimal APIs with that of the traditional approach
by using two very different methods.

Minimal APIs were not designed for performance alone and evaluating them solely on that basis is
a poor starting point.

Table 10.1 indicates that there are a lot of differences between the responses of minimal APIs and that
of traditional ASP.NET Web API applications.

The tests were conducted on the same machine with the same resources. We found that minimal APIs
performed about 30% better than the traditional framework.

We have learned about how to measure the speed of our applications – this can be useful for understanding
whether the application will hold the load and what response time it can offer. We can also leverage
this on small portions of critical code.

As a final note, the applications tested were practically bare bones. The validation part that should
be evaluated in the ASP.NET Web API application is almost irrelevant since there are only two fields
to consider. The gap between the two frameworks increases as the number of components that have
been eliminated in the minimal APIs that we have already described increases.

Index

Symbols
.NET 6

configuration in 59-62
Priority key, in appsettings files 62, 63

.NET Core 58

.NET Foundation
about 123
URL 123

A
ApiController attribute 120
application

configuring, in Azure App Service 69
configuring, in Docker 70-72

application programming interface (API)
about 38
data, mapping from 129-131
data, mapping to 129

Apply method 49
appsettings files

Priority key 62, 63
array

inserting 70

ASP.NET
logger, exploring 93-95

ASP.NET Core authentication
reference link 154

ASP.NET Core authorization
reference link 154

ASP.NET Core Identity 157
ASP.NET Core templates 93
authentication 154
authorization

about 154
handling 165

AutoMapper
about 132
mapping with 132-134
references 132

Azure Application Insights
about 111
registering 111
with standard log provider 113

Azure App Service
application, configuring 69

B
bearer authentication scheme 155
bearer tokens 155

Index216

BenchmarkDotNet
running 211-214
used, for benchmarking minimal

APIs 210, 211

C
claims 158
Console log, logging framework 103-106
Console provider 94
cross-origin resource sharing (CORS)

custom policies, configuring 57
default policy, configuring 56
enabling 50, 51
flow, from HTTP request 52-55
setting, with annotation 58
setting, with extensions 58
setting, with policy 55, 56

custom attributes
reference link 123

custom binding
about 23-25
reference link 23

custom provider
creating 106-111

D
Dapper

about 143
repository, implementing in endpoints 149
repository pattern, creating 144-146
setting up, with SQL Server LocalDB 143
used, for adding new entity in database 148
using 143
using, to implement database query 146, 147

data
mapping, from APIs 129-131
mapping, to APIs 129-131

data annotations
about 120, 186
used, for performing validation 121-123

data transformation object (DTO) 130
data validation 119
Debug provider 94
default policies

using 172, 173
dependency injection (DI)

about 84-86
implementing, in Minimal

API project 88-91
lifetimes 87

Developer Exception Page 73
Docker

application, configuring 70-72

E
endpoints 16
Entity Framework Core (EF Core) 136
Entity Framework (EF)

about 136
EF Core, adding 137
endpoints, adding 138-142
project, setting up 136, 137
using 136

error handling
about 73
IETF standard 75-78
Problem Details 75-78
traditional approach 73-75

EventLog 94
EventSource 94

Index 217

F
fallback policies

using 172, 173
FluentValidation

about 123
integrating 123-126
references 123
used, for localizing validation

messages 189-191

G
global API settings

configuring, in .NET 6 59-62
options pattern 63, 64
sources, configuring 68
working with 58

globalization
about 175, 176
support, adding to Swagger 179-182

globalized minimal API
UTC support, adding 191-194

GO client 40

H
Hash-Based Message Authentication

Code (HMAC) 158
HTTP request

CORS flow, from 52-55

I
IETF standard 75-78
Internet Information Services (IIS) 99
IOperationFilter interface 49

IOptions
about 66-68
validation, using 68

J
JMeter 40
JSON schemas 128
JSON Web Token (JWT)

about 154
reference link 154

K
K6

about 40
performance test, running 203-210
tests, writing 202, 203

L
localization

about 175, 176
integrating, in validation frameworks 186

localized messages
formatting, with resource files

(.resx) 185, 186
Log4net 104
logger, ASP.NET

exploring 93-95
logging framework

about 94
Application Insights 111-113
configurations 96-98
Console log 103-106
custom provider, creating 106-111
infrastructure 99, 100

Index218

leveraging 103
source generators 100-103

logging scenarios 94
log levels 94, 95

M
manual mapping

performing 131
mapping

about 129
need for 129
with AutoMapper 132-134

MicroElements.Swashbuckle.FluentValidation
reference link 128

Microsoft Web API
history 5

minimal API application
globalization support, adding

to Swagger 179-182
localizing 176-178

minimal API project
architecting 31-33
creating 6
creating, with Visual Studio 2022 6-8
creating, with Visual Studio Code 8, 9
dependency injection (DI),

implementing 88-91
structure 9-13

minimal API, protecting
about 154-156
authentication, testing 164, 165
JWT bearer, generating 157-160
JWT bearer, validating 161, 162
JWT support, adding to Swagger 162-164

minimal APIs
about 94
benchmarking, with

BenchmarkDotNet 210, 211

history 5
performance, exploring, with load tests 198
performance, improving 197
Swagger 41-43
versioning 43

minimal APIs, performance with load tests
k6 performance test, running 203-210
k6 tests, writing 202, 203
use cases 198-202

MiniValidation
about 121
reference link 121
used, for localizing validation

messages 186-189
model validation 120

N
named options 64
NLog 104
NuGet package 39
nullable reference types 22, 121

O
object

inserting 69
Object-Relational Mapper (ORM) 143
Open API Generator 40
OpenTelemetry

about 99
URL 99

operation filter 47-50, 179
options pattern

about 63, 64
interfaces 65, 66
IOptions 66-68
validation 67, 68

Index 219

P
parameter binding

about 20
sources 21
working 20-22

policies 165, 168
policy-based authentication

reference link 173
policy-based authorization

handling 168-172
policy requirements 169
Problem Details 75-78

R
reflection

about 121
reference link 35
using 33, 34

resource files (.resx)
creating 182-185
used, for formatting localized

messages 185, 186
using 182
working with 182-185

responses
exploring 26-28

role-based authorization
handling 165-168

roles 165
route constraints

about 19
reference link 19

route handlers 17
route parameters 18

routing
about 16
reference link 16

S
same-origin policy 50
serialization

controlling 29-31
Serilog

about 104, 113
structured log, storing with 113-116

SHA256 hash function
reference link 158

single-page applications (SPAs) 50
sinks 113
source generators 100-103
special bindings 22
SQL Server LocalDB

used, for setting up Dapper 143
structured log

storing, with Serilog 113-116
Swagger

exploring 38
features 44-47
globalization support, adding 179-182
in minimal APIs 41-43
in Visual Studio scaffold 38-40
Open API Generator 40
OperationFilter 47-50
validation information, adding to 127-129

System.Text.Json namespace
reference link 29

T
TimeOnly data type

reference link 170

Index220

U
UTC support

adding, to globalized minimal API 191-194

V
validation

handling 119-121
performing, with data annotations 121-123

validation attributes
reference link 123

validation frameworks
localization, integrating 186

validation information
adding, to Swagger 127-129

validation messages
localizing, with FluentValidation 189-191
localizing, with MiniValidation 186-189

versioning
in minimal APIs 43

Visual Studio 2022
minimal API project, creating with 6-8

Visual Studio Code
minimal API project, creating with 8, 9

Visual Studio scaffold
Swagger 38-40

W
W3C log 99
WebApplication 93
WebApplicationBuilder 93
Windows Communication

Foundation (WCF) 5

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packt.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Customizing ASP.NET Core 6.0 - Second Edition

Jürgen Gutsch

ISBN: 978-1-80323-360-4

•	 Explore various application configurations and providers in ASP.NET Core 6

•	 Enable and work with caches to improve the performance of your application

•	 Understand dependency injection in .NET and learn how to add third-party DI containers

•	 Discover the concept of middleware and write your middleware for ASP.NET Core apps

•	 Create various API output formats in your API-driven projects

•	 Get familiar with different hosting models for your ASP.NET Core app

https://www.packtpub.com/product/customizing-asp-net-core-6-0-second-edition/9781803233604

223Other Books You May Enjoy

ASP.NET Core 6 and Angular - Fifth Edition

Valerio De Sanctis

ISBN: 978-1-80323-970-5

•	 	 Use the new Visual Studio Standalone TypeScript Angular template

•	 Implement and consume a Web API interface with ASP.NET Core

•	 Set up an SQL database server using a local instance or a cloud datastore

•	 Perform C# and TypeScript debugging using Visual Studio 2022

•	 Create TDD and BDD unit tests using xUnit, Jasmine, and Karma

•	 Perform DBMS structured logging using providers such as SeriLog

•	 Deploy web apps to Azure App Service using IIS, Kestrel, and NGINX

•	 Learn to develop fast and flexible Web APIs using GraphQL

•	 Add real-time capabilities to Angular apps with ASP.NET Core SignalR

https://www.packtpub.com/product/asp-net-core-6-and-angular-fifth-edition/9781803239705

224

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Hi,

We are Andrea Tosato, Marco Minerva, and Emanuele Bartolesi authors of Mastering Minimal APIs
in ASP.NET Core. We really hope you enjoyed reading this book and found it useful for increasing
your productivity and efficiency in ASP.NET Core.

It would really help us (and other potential readers!) if you could leave a review on Amazon sharing
your thoughts on Mastering Minimal APIs in ASP.NET Core.

Go to the link below to leave your review:

https://packt.link/r/1803237821

Your review will help us to understand what’s worked well in this book, and what could be improved
upon for future editions, so it really is appreciated.

http://authors.packtpub.com
https://packt.link/r/1803237821

225

Best Wishes,

Andrea Tosato

Marco Minerva

Emanuele Bartolesi

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1: Introduction
	Chapter 1: Introduction to Minimal APIs
	Technical requirements
	A brief history of the Microsoft Web API
	Creating a new minimal API project
	Creating the project with Visual Studio 2022
	Creating the project with Visual Studio Code

	Looking at the structure of the project
	Summary

	Chapter 2: Exploring Minimal APIs and Their Advantages
	Technical requirements
	Routing
	Route handlers
	Route parameters
	Route constraints

	Parameter binding
	Special bindings
	Custom binding

	Exploring responses
	Controlling serialization
	Architecting a minimal API project
	Going forward

	Summary

	Chapter 3: Working with Minimal APIs
	Technical requirements
	Exploring Swagger
	Swagger in the Visual Studio scaffold
	OpenAPI Generator
	Swagger in minimal APIs

	Enabling CORS
	CORS flow from an HTTP request
	Setting CORS with a policy
	Setting CORS with extensions
	Setting CORS with an annotation

	Working with global API settings
	Configuration in .NET 6
	Options pattern
	Configuration sources

	Error handling
	Traditional approach
	Problem Details and the IETF standard

	Summary

	Part 2: What’s New in .NET 6?
	Chapter 4: Dependency Injection in a Minimal API Project
	Technical requirements
	What is dependency injection?
	Understanding dependency injection lifetimes

	Implementing dependency injection in a minimal API project
	Summary

	Chapter 5: Using Logging to Identify Errors
	Technical requirements
	Exploring logging in .NET
	Configuring logging
	Customizing log message
	Infrastructure logging
	Source generators

	Leveraging the logging framework
	Console log
	Creating a custom provider
	Application Insights

	Storing a structured log with Serilog
	Summary

	Chapter 6: Exploring Validation
and Mapping
	Technical requirements
	Handling validation
	Performing validation with data annotations
	Integrating FluentValidation
	Adding validation information to Swagger

	Mapping data to and from APIs
	Performing manual mapping
	Mapping with AutoMapper

	Summary

	Chapter 7: Integration with the Data Access Layer
	Technical requirements
	Using Entity Framework
	Setting up the project
	Adding EF Core to the project
	Adding endpoints to the project

	Using Dapper
	Setting up the project
	Creating a repository pattern
	Using Dapper to query the database
	Adding a new entity in the database with Dapper
	Implementing the repository in the endpoints

	Summary

	Part 3: Advanced Development and Microservices Concepts
	Chapter 8: Adding Authentication and Authorization
	Technical requirements
	Introducing authentication and authorization
	Protecting a minimal API
	Generating a JWT bearer
	Validating a JWT bearer
	Adding JWT support to Swagger
	Testing authentication

	Handling authorization – roles and policies
	Handling role-based authorization
	Applying policy-based authorization
	Using default and fallback policies

	Summary

	Chapter 9: Leveraging Globalization and Localization
	Technical requirements
	Introducing globalization and localization
	Localizing a minimal API application
	Adding globalization support to Swagger

	Using resource files
	Creating and working with resource files
	Formatting localized messages using resource files

	Integrating localization in validation frameworks
	Localizing validation messages with MiniValidation
	Localizing validation messages with FluentValidation

	Adding UTC support to a globalized minimal API
	Summary

	Chapter 10: Evaluating and Benchmarking the Performance of
Minimal APIs
	Technical requirements
	Improvements with minimal APIs
	Exploring performance with load tests
	Use cases
	Writing k6 tests
	Running a k6 performance test

	Benchmarking minimal APIs with BenchmarkDotNet
	Running BenchmarkDotNet

	Summary

	Index
	About Packt
	Other Books You May Enjoy

